首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Burcu Saner 《Fuel》2010,89(8):1903-25218
An improved, safer and mild method was proposed for the exfoliation of graphene like sheets from graphite to be used in fuel cells. The major aim in the proposed method is to reduce the number of layers in the graphite material and to produce large quantities of graphene bundles to be used as catalyst support in polymer electrolyte membrane fuel cells. Graphite oxide was prepared using potassium dichromate/sulfuric acid as oxidant and acetic anhydride as intercalating agent. The oxidation process seemed to create expanded and leafy structures of graphite oxide layers. Heat treatment of samples led to the thermal decomposition of acetic anhydride into carbondioxide and water vapor which further swelled the layered graphitic structure. Sonication of graphite oxide samples created more separated structures. Morphology of the sonicated graphite oxide samples exhibited expanded the layer structures and formed some tulle-like translucent and crumpled graphite oxide sheets. The mild procedure applied was capable of reducing the average number of graphene sheets from 86 in the raw graphite to nine in graphene-based nanosheets. Raman spectroscopy analysis showed the significant reduction in size of the in-plane sp2 domains of graphene nanosheets obtained after the reduction of graphite oxide.  相似文献   

2.
赵健  刘振生  秦余磊 《炭素》2014,(2):13-18
本文以天然鳞片石墨为原料,利用超临界状态下二氧化碳的快速膨胀(RESS)来剥离石墨产生石墨烯纳米片。电子显微镜(SEM)表征证实RESS可有效地实现石墨的剥离,并产生了一些石墨烯纳米片层。同时,为了解决再团聚难题,提出利用碳纳米管在产生石墨烯纳米片间穿层的方法和利用小分子包覆法来防止其再团聚,实验证实都起到良好的效果。  相似文献   

3.
Graphene oxide and furfuryl alcohol modified graphene nanosheets (G‐FA) were used to prepare graphene/novolak composites. Effect of graphene compatibilization on the properties of the composites especially carbon yield value is evaluated. Both types of graphene nanosheets were dispersed uniquely in the novolak matrix as proved by X‐ray diffraction analysis. However, modification of graphene sheets by furfuryl alcohol results in more improved dispersions. Thermogravimetric analysis confirms the elevated thermal stability of the nanocomposites in comparison with the neat novolak. In addition, G‐FA containing composites have higher carbon yield values. A shift in the wave number of characteristic bonds of graphene after oxidation and modification with furfuryl alcohol, O? H, C?O, and C? O bonds, are seen in the Fourier transform infrared spectroscopy spectra. Raman results and scanning electron microscopy images show that graphene nanosheets reduced in size and wrinkled by oxidation and functionalization. Transmission electron microscopy image of the composite with 0.2 wt % of G‐FA reveals the presence of nanosheets with curvature. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40273.  相似文献   

4.
Fluorinated graphene, which combines the unique properties of graphite fluoride and graphene, has attracted considerable attention in recent years. Here, we developed a facile, efficient, and scalable method for high-yield exfoliation of graphite fluoride into fluorinated graphene (fluorographene) nanosheets. The exfoliation approach consists of solid ball milling of graphite fluoride with ammonia borane and followed washing with ethanol to get rid of ammonia borane from the products. The majority of the as-synthesized fluorographene nanosheets consist of 1–6 atomic layers with grain sizes in the range of 0.3–1 μm. X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy demonstrated that fluorographene has the same structure as pristine graphite fluoride.  相似文献   

5.
Hydrophilic graphene nanosheets were rapidly synthesized by reacting graphene oxide nanosheets with poly(sodium 4-styrene sulfonate) and simultaneously reducing by hydrazine hydrate under hydrothermal conditions. Organophilic graphene nanosheets were prepared by reacting with octadecylamine and reduction by hydroquinone through a reflux process. Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy measurements confirmed the attachment of organic molecules to the graphene nanosheets to achieve hydrophilic and organophilic affinity. X-ray diffraction, Raman spectroscopy, and transmission electron microscopy analysis indicated that the crystal structure of the graphene nanosheets was maintained intact after chemical functionalisation.  相似文献   

6.
《Ceramics International》2020,46(14):21873-21887
Graphene has attracted much attention and holds great promise in various applications due to its extraordinary properties. To realize applications of graphene in large scale, developing a facile, green and cost-effective method for mass production of high-quality graphene is highly desired. Relative to expensive and complicated bottom-up approaches, top-down methods for graphene production are promising owing to their low cost and simplicity. Specifically, exfoliation of graphene nanosheets in liquid phase is favorable for their dispersion, functionalization and processing. Instead of highly toxic organic solvents, using water as the liquid medium makes exfoliation process eco-friendly and sustainable. In this review, recent progress on exfoliation of graphene nanosheets in water is discussed, with a particular focus on exfoliation and stabilizing mechanism in various aqueous media. Different water-based exfoliation methods, such as liquid-phase exfoliation and electrochemical exfoliation, are surveyed.  相似文献   

7.
A small amount of graphene nanosheets was added to commercial graphite as an anode active material in lithium ion batteries and its effects were examined through a variety of physical and electrochemical characterization techniques: FE-SEM, XRD, Raman, BET, and EIS. Compared to a commercial graphite electrode, a composite electrode containing 1 or 5 wt% graphene nanosheets showed higher reversible capacity and enhanced cyclability. This was attributed to the large surface area and low charge transfer resistance of the graphene nanosheets.  相似文献   

8.
Graphene nanosheets were prepared by complete oxidation of pristine graphite followed by thermal exfoliation and reduction. Polyethylene terephthalate (PET)/graphene nanocomposites were prepared by melt compounding. Transmission electron microscopy observation indicated that graphene nanosheets exhibited a uniform dispersion in PET matrix. The incorporation of graphene greatly improved the electrical conductivity of PET, resulting in a sharp transition from electrical insulator to semiconductor with a low percolation threshold of 0.47 vol.%. A high electrical conductivity of 2.11 S/m was achieved with only 3.0 vol.% of graphene. The low percolation threshold and superior electrical conductivity are attributed to the high aspect ratio, large specific surface area and uniform dispersion of the graphene nanosheets in PET matrix.  相似文献   

9.
Zou Y  Wang Y 《Nanoscale》2011,3(6):2615-2620
This paper reports a hydrothermal preparation of NiO-graphene sheet-on-sheet and nanoparticle-on-sheet nanostructures. The sheet-on-sheet nanocomposite showed highly reversible large capacities at a common current of 0.1 C and good rate capabilities. A large initial charge capacity of 1056 mAh/g was observed for the sheet-on-sheet composite at 0.1 C, which decreased by only 2.4% to 1031 mAh/g after 40 cycles of discharge and charge. This cycling performance is better than that of NiO nanosheets, graphene nanosheets, NiO-graphene nanoparticle-on-sheet, and previous carbon/carbon nanotube supported NiO composites. It is believed that the mechanical stability and electrical conductivity of NiO nanosheets are increased by graphene nanosheets (GNS), the aggregation or restacking of which to graphite platelets are, on the other hand, effectively prevented by NiO nanosheets.  相似文献   

10.
Shielding coatings based on graphite nanosheets were prepared by compounding method. The surface morphology of the graphite nanosheets and conductive coatings was examined by scanning electron microscopy. The surface resistivity of the coatings was greatly declined by incorporating the graphite nanosheets. The electromagnetic interference shielding effectiveness (SE) from 0.3 MHz to 1.5 GHz was also studied, and found that the SE of the coatings was consistent with its conductivity. The best sample was shown to exhibit up to 38 dB of SE at 1.5 GHz (with a thickness of 400 μm). The main shielding mechanism of the system was reflection and multiple reflections.  相似文献   

11.
Graphene nanosheets were prepared by reducing graphite oxide with hydrazine hydrate. The effects of reduction time on the structure and morphology of graphene nanosheets have been investigated. Their electrochemical performance in aqueous and organic electrolytes was also analyzed. With an increase of reduction time, the C and N contents of graphene nanosheets increased, while the specific surface areas and the specific capacitances decreased. Changes in reduction time produced a significant effect on the numbers as well as the types of oxygen and nitrogen functionalities. The graphene nanosheets, prepared by using a reduction time of 30 min have the highest specific capacitance of 192 F g?1 in a 6 mol L?1 KOH electrolyte. All prepared graphene nanosheets have a good rate performance and cycle stability.  相似文献   

12.
In this study, graphite oxide (GO) is synthesized from natural graphite flakes by the modified Hummers method. Characterization by Fourier transform infrared, X‐ray photoelectron, Raman and ultraviolet‐visible spectroscopies, X‐ray diffraction, and thermogravimetric analysis is conducted on GO to confirm the oxidation of graphite. Unplasticized and glycerol plasticized chitosan/graphene oxide (CS/GO) nanosheets nanocomposites with different GO loadings are prepared by solution casting. The combined effect of GO and glycerol on structure, thermal and mechanical properties of nanocomposite films is studied. GO nanosheets are well dispersed throughout the CS matrix due to the hydrogen bonding and electrostatic interactions between CS and GO nanosheets. The incorporation of GO within the CS matrix results in a decrease of the crystallinity, an improvement of thermal stability, and a significant enhancement of the stiffness and tensile strength that is emphasized by the glycerol. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45092.  相似文献   

13.
We report that the hydrophilic affinity of graphene oxide nanosheets can be significantly increased by reacting with allylamine. High resolution transmission electron microscopy and electron diffraction analysis confirmed that the graphene oxide nanosheets were amorphous in structure. Hydrophobic graphene oxide nanosheets were also prepared via functionalising with phenylisocynate (C6H5NCO) through a solvothermal synthesis process. Hydrophobic graphene oxide nanosheets can be used as additives in polymer-based composites and other functional applications.  相似文献   

14.
《Ceramics International》2022,48(12):17171-17177
Graphene nanosheets (GNSs)/Al2O3 composites were synthesized by wet milling. In this study, the effects of wet milling speed on the layer distribution, quality and conversion efficiency of graphene in GNSs/Al2O3 composites were studied using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), raman spectroscopy, fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results show that the intensity of graphite peak decreases and the conversion efficiency of graphene increases with the increase of rotational speed in the range of 200–300 rpm, and a small amount of graphene coated Al2O3 nanoparticles were found in GNSs/Al2O3 composites. The number of layers (≤10 layers) of GNSs gradually increases with the increase of ball milling speed. When the rotational speed is 300 rpm, the graphene conversion efficiency is the highest. At different rotational speeds, graphene defects were the least influential marginal defects. There was no characteristic peak of graphene oxide (GO) appeared in the composite, indicating a small oxidation degree of graphene.  相似文献   

15.
Thermal exfoliation and reduction of graphene oxide (GO) were performed to prepare graphene nanosheets at 300 °C under the ambient atmosphere without any supplementary conditions. The microstructure and morphology of the resulting graphene nanosheets were characterized with scanning electron microscopy, transmission electric microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The composite films based on poly(1-butene) (PB) and graphene nanosheets were prepared successfully through solution blending and compression molding. The morphological investigation suggested that the graphene nanosheets with nanoscale thickness achieved a homogeneous dispersion in the PB matrix. The composite films exhibited a sharp transition from insulating state to the conducting one with a low percolation threshold, followed by a high electrical conductivity at graphene content higher than 1.6 vol %. The composite films also achieved high dielectric constant with low dielectric loss due to the effective electrical conductive path established by graphene nanosheets in a local range. Moreover, the mechanical evaluation demonstrated that a considerable reinforcement was achieved for the composite films due to the strong interfaces between the graphene nanosheets and PB matrix. The introduction of graphene nanosheets not only enhanced the nucleation capability and crystallinity of PB domain but also improved the thermal stability of the composite films. In addition, the composite films showed an increase in storage modulus and a decrease in loss factors due to the incorporation of graphene nanosheets.  相似文献   

16.
Tin oxide (SnO2)/graphene nanosheets (GNS) composite was prepared by a simple chemical-solution method as the catalyst support for direct ethanol fuel cells. Then the SnO2-GNS composites supporting Pd (Pd/SnO2-GNS) catalysts were synthesized by a microwave-assisted reduction process. The Pd/SnO2-GNS catalysts were characterized by using X-ray diffraction, transmission electron microscopy and energy-dispersive spectroscopy techniques. The electrocatalytic performances of Pd/SnO2-GNS catalysts for ethanol oxidation were studied by cyclic voltammetric and chronoamperometric measurements. It was found that compared with Pd/GNS, the Pd/SnO2-GNS catalyst showed superior electrocatalytic activity for ethanol oxidation when the mass ratio of SnCl2·2H2O precursor salt to graphite oxide was about 1:2.  相似文献   

17.
Yan Wang  Zixing Shi  Junrong Yu  Lei Chen  Jing Zhu  Zuming Hu 《Carbon》2012,50(15):5525-5536
The extent of oxidation of graphite oxide (GO) was tailored by adjusting the amount of oxidant during oxidation. The characteristics of GOs with different degrees of oxidation and their corresponding exfoliated GO nanosheets (GONS) were investigated. It was found that the less oxidized GONS possessed 3–4 layers with much fewer structural defects. Mechanical testing of the resultant poly(vinyl alcohol)-based composites demonstrated that the less oxidized GONS was more effective than fully oxidized single-layered GONS in terms of reinforcing polymers. The reinforcement effect was discussed and confirmed by the Halpin–Tsai model. The results may provide an alternative for the fabrication of low-cost and high-performance graphene/polymer composites.  相似文献   

18.
Graphene nanosheet/polymer composites were prepared using in situ reduction-extractive dispersion technology. The morphology and microstructure of the composites were examined by scanning electron and optical microscopy. The results indicate that graphene nanosheets from the reduction of graphite oxide are about 5 nm thick and 1-3 μm in diameter. Reduction-extractive dispersion technology can effectively promote the dispersion of graphene nanosheets and consequently an excellent conductive network is formed in the matrix. The percolation threshold of the composite is about 0.15 vol.%. When the graphene nanosheet content is lower than 1.5 vol.%, the conductivity of the composites is 3-5 orders of magnitude higher than that of composites filled with graphite nanosheets from expanded graphite.  相似文献   

19.
The distributions of sizes of silver nanoparticles that were deposited on monolayer, bilayer, and trilayer graphene films were observed. Deposition was carried out by thermal evaporation and the graphene films, placed on SiO2/Si substrates, were obtained by the mechanical splitting of graphite. Before the deposition, optical microscopy and Raman spectroscopy were utilized to identify the number of the graphene layers. After the deposition, scanning electron microscopy was used to observe the morphologies of the particles. Systematic analysis revealed that the average sizes of the nanoparticles increased with the number of graphene layers. The density of nanoparticles decreased as the number of graphene layers increased, revealing a large variation in the surface diffusion strength of nanoparticles on the different substrates. The mechanisms of formation of these layer-dependent morphologies of silver on n-layer graphene are related to the surface free energy and surface diffusion of the n-layer graphene. The effect of the substrate such as SiO2/Si was investigated by fabricating suspended graphene, and the size and density were similar to those of supported graphene. Based on a comparison of the results, the different morphologies of the silver nanoparticles on different graphene layers were theorized to be caused only by the variation of the diffusion barriers with the number of layers of graphene.  相似文献   

20.
Graphene is highly sensitive to environmental influences, and thus, it is worthwhile to deposit protective layers on graphene without impairing its excellent properties. Hexagonal boron nitride (h-BN), a well-known dielectric material, may afford the necessary protection. In this research, we demonstrated the van der Waals epitaxy of h-BN nanosheets on mechanically exfoliated graphene by chemical vapor deposition, using borazine as the precursor to h-BN. The h-BN nanosheets had a triangular morphology on a narrow graphene belt but a polygonal morphology on a larger graphene film. The h-BN nanosheets on graphene were highly crystalline, except for various in-plane lattice orientations. Interestingly, the h-BN nanosheets preferred to grow on graphene than on SiO2/Si under the chosen experimental conditions, and this selective growth spoke of potential promise for application to the preparation of graphene/h-BN superlattice structures fabricated on SiO2/Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号