首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli has been the most popular cellular biofactory for the production of many biomolecules including recombinant proteins whose bioactivities are not dependent on complicated post-translational modifications such as glycosylation. Despite many advantages of protein production using E. coli, the formation of insoluble inclusion bodies (IBs) poses a major challenge to harnessing E. coli as a host of choice. Furthermore, the complicated processing steps associated with IB extraction, solubilisation of IBs and refolding of the solubilised-denatured IB proteins, which are typically encountered in the traditional IB processing flowsheet, significantly compromise process economics of IB-route protein production using E. coli. In this paper, many recent advances in innovative IB processing technologies are reviewed with a special emphasis on their potential to contribute to process intensification, which is critical to achieve better process economics in the IB-route recombinant protein production using E. coli.  相似文献   

2.
Polyelectrolytes, in this study were synthesized from styrene-maleic anhydride (SMA) copolymer, poly(ethylene glycol)400 (PEG400), and lithium perchlorate (LiClO4). Fourier transform infrared spectroscopy (FTIR), and magic angle spinning (MAS) solid-state NMR were used to monitor the interaction between Li+ ions and polymer. The results of FTIR and MAS solid-state NMR indicate the Li+ ions are preferentially coordinated to the ether oxygen of PEG. The Tg of the PEG segments in polyelectrolyte increases with LiClO4 concentration, as determined by differential scanning calorimetry (DSC), indicating that solubility of the Li+ ions in the host polymer increases with the PEG content. Impedance spectroscopy (IS) shows that the bulk conductivity of polyelectrolytes and the conductivity behavior obeys the Vogel-Tamman-Fulcher (VTF) equation.  相似文献   

3.
In a previous work it has been shown that the combination of H2O2 and low wavelength UV radiation is a suitable process for degrading dichloroacetic acid (DCA). The final result provided a validated and complete reaction scheme. That proposal included two possible ways for the hydroxyl radical to react with DCA [Zalazar, C., Labas, M., Brandi, R., Cassano, A., 2007. Dichloroacetic acid degradation employing hydrogen peroxide and UV radiation. Chemosphere 66, 808-815].This work was directed to a single objective: to derive, from the previous reaction sequence, a mathematical model able to represent the kinetics of DCA oxidation and validate its predictive quality with experiments. This representation of the reaction must include all the required variables for an ulterior reactor design and scale-up and, consequently, the kinetic model parameters must be independent of the shape, size and configuration of the laboratory reactor.Working with a complete set of experimental runs that included all the involved variables, the unknown kinetics parameters of the DCA degradation were obtained by comparing predicted concentrations by the model (represented by a set of two ordinary differential equations and two algebraic equations coupled with a mass and a radiation balance inside the reactor) with the experimental values, employing a multi-parameter non-linear regression analysis. Experimental values confirmed the validity of the proposed mechanism. Additionally, an optimal concentration ratio of hydrogen peroxide with respect to DCA was obtained (r=CH2O2/CDCA≈8).The intermediate results of the numerical solution of the complete system of differential and algebraic equations representing the proposed complete reaction mechanism were useful to find simplified, analytical expressions for the reaction rates of DCA and H2O2. The obtained rates resulting from these simplifications were compared with those of the complete system showing a very satisfactory concordance. This outcome is, at the same time, a clear indication of the significant influence of the radical in the reaction evolution.  相似文献   

4.
5.
The computational mass transfer (CMT) model is composed of the basic differential mass transfer equation, closing with auxiliary equations, and the appropriate accompanying CFD formulation. In the present modified CMT model, the closing auxiliary equations [Liu, B.T., 2003. Study of a new mass transfer model of CFD and its application on distillation tray. Ph.D. Dissertation, Tianjin University, Tianjin, China; Sun, Z.M., Liu, B.T., Yuan, X.G., Liu, C.J., Yu, K.T., 2005. New turbulent model for computational mass transfer and its application to a commercial-scale distillation column. Industrial and Engineering Chemistry Research 44, 4427-4434] are further simplified for reducing the complication of computation. At the same time, the CFD formulation is also improved for better velocity field prediction. By this complex model, the turbulent mass transfer diffusivity, the three-dimensional velocity/concentration profiles and the efficiency of mass transfer equipment can be predicted simultaneously. To demonstrate the feasibility of the proposed simplified CMT model, simulation was made for distillation column, and the simulated results are compared with the experimental data taken from literatures. The predicted distribution of liquid velocity on a tray and the average mass transfer diffusivity are in reasonable agreement with the reported experimental measurement [Solari, R.B., Bell, R.L., 1986. Fluid flow patterns and velocity distribution on commercial-scale sieve trays. AI.Ch.E. Journal 32, 640-649; Cai, T.J., Chen, G.X., 2004. Liquid back-mixing on distillation trays. Industrial and Engineering Chemistry Research 43, 2590-2597]. In applying the modified model to a commercial scale distillation tray column, the predictions of the concentration at the outlet of each tray and the tray efficiency are satisfactorily confirmed by the published experimental data [Sakata, M., Yanagi, T., 1979. Performance of a commercial scale sieve tray. Institution of Chemical Engineers Symposium Series, vol. 56, pp. 3.2/21-3.2/34]. Furthermore, the validity of the present model is also shown by checking the computed results with a reported pilot-scale tray column [Garcia, J.A., Fair, J.R., 2000. A fundamental model for the prediction of distillation sieve tray efficiency. 1. Database development. Industrial and Engineering Chemistry Research 39, 1809-1817] in the bottom concentration and the overall tray efficiency under different operating conditions. The modified CMT model is expected to be useful in the design and analysis of distillation column.  相似文献   

6.
This paper describes the development of a microchannel-based Sabatier reactor for applications such as propellant production on Mars or space habitat air revitalization. Microchannel designs offer advantages for a compact reactor with excellent thermal control. This paper discusses the development of a Ru-TiO2-based catalyst using powdered form and its application and testing in a microchannel reactor. The resultant catalyst and microchannel reactor demonstrates good conversion, selectivity, and longevity in a compact device. A chemically reacting flow model is used to assist experimental interpretation and to suggest microchannel design approaches. A kinetic rate expression for the global Sabatier reaction is developed and validated using computational models to interpret packed-bed experiments with catalysts in powder form. The resulting global reaction is then incorporated into a reactive plug-flow model that represents a microchannel reactor.  相似文献   

7.
The problem of optimal time-constant and time-varying operation for transport-reaction processes is considered, when the cost functional and/or equality constraints necessitate the consideration of phenomena that occur over disparate length scales. Multiscale process models are initially developed, linking continuum conservation laws with microscopic scale simulators. Subsequently, order reduction techniques for dissipative partial-differential equations are combined with adaptive tabulation of microscopic simulation data to reduce the computational requirements of the optimization problem, which is then solved using standard search algorithms. The method is applied to a conceptual thin film deposition process to compute optimal substrate-surface temperature profiles that simultaneously maximize film-deposition-rate uniformity (macroscale objective) and minimize surface roughness (microscale objective) across the film surface for a steady-state process operation. Subsequently, optimal time-varying policies of substrate temperature and precursor inlet concentrations are computed under the assumption of quasi-steady-state process operation.  相似文献   

8.
A nonlinear constrained optimization procedure is used in the cathode design in order to maximize the average current density at a fixed voltage in a polymer electrolyte membrane (PEM) fuel cell with interdigitated fuel/air distributors. The operation of the PEM fuel cell is studied using a steady-state, two-phase, two-dimensional electro-chemical model. The following geometrical parameters of the cathode are considered: the thickness, and length per one shoulder of the interdigitated air distributor and the length of the shoulder. The optimization results obtained show that within manufacturability controlled lower and the space-limitation controlled upper bounds of these parameters, the optimal-cathode design corresponds to the lower bounds in the cathode length per one shoulder of the interdigitated air distributor and the fraction of the length associated with the shoulders and at a low (but larger than the lower bound) value of the cathode thickness. These findings are explained using an analogy with the effect of pipe dimensions on the fluid flow through a pipe and by considering the role of forced convection on the oxygen transport to the membrane/cathode interface.  相似文献   

9.
This work was aimed at modeling hydrodynamic characteristics of fluidization in conical beds using quartz sand as the inert bed material and air as the fluidizing agent. The minimum fluidization velocity, umf, and the minimum velocity of full fluidization, umff, were determined by Peng and Fan's models modified for conical fluidized bed. Meanwhile, the pressure drop across a bed, Δp (including Δpmax and Δpmff corresponding to umf and umff, respectively), was predicted by using modified Ergun's equations for variable superficial air velocity at an air distributor, u0. The predicted results were validated by experimental data for some operating conditions. Effects of the sand particle size, cone angle and static bed height on the fluidization pattern and hydrodynamic characteristics are discussed. With the proposed models, the Δp-u0 diagram were obtained with rather high accuracy for the conical air-sand beds of 30-45° cone angles and 20-30 cm static bed heights, when using 300- sand particles. For the predicted umf and umff, the relative computational errors were found to be within 20% for wide ranges of operating variables, whereas Δpmax and Δpmff could be predicted with lower (10-15%) relative errors. With higher cone angles and/or bed heights, the computational accuracy was found to deteriorate.  相似文献   

10.
Numerical simulations of the bubbly flow in two square cross-sectioned bubble columns were conducted with the commercial CFD package CFX-4.4. The effect of the model constant used in the sub-grid scale (SGS) model, CS, as well as the interfacial closures for the drag, lift and virtual mass forces were investigated. Furthermore, the performance of three models [Pfleger, D., Becker, S., 2001. Modeling and simulation of the dynamic flow behavior in a bubble column. Chemical Engineering Science, 56, 1737-1747; Sato, Y., Sekoguchi, K.,1975. Liquid velocity distribution in two-phase bubble flow. International Journal of Multiphase Flow 2, 79-95; Troshko, A.A., Hassan, Y.A., 2001. A two-equation turbulence model of turbulent bubbly flows. International Journal of Multiphase Flow 27, 1965-2000] to account for the bubble-induced turbulence in the k-ε model was assessed. All simulation results were compared with experimental data for the mean and fluctuating liquid and gas velocities. It is shown that the simulation results with CS=0.08 and 0.10 agree well with the measurements. When CS is increased, the effective viscosity increases and subsequently the bubble plume becomes less dynamic. All three bubble-induced turbulence models could produce good solutions for the time-averaged velocity. The models of Troshko and Hassan and Pfleger and Becker reproduce the dynamics of the bubbly flow in a more accurate way than the model of Sato and Sekoguchi. Based on the comparison of the results obtained for two columns with different aspect ratio (H/D=3 and H/D=6), it was found that the model of Pfleger and Becker performs better than the model of Troshko and Hassan, while the model of Sato and Sekoguchi performs the worst. It was observed that the interfacial closure model proposed by Tomiyama [2004. Drag, lift and virtual mass forces acting on a single bubble. Third International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa, Italy, 22-24 September] performs better for the taller column. With the drag coefficient proposed by Tomiyama, the predicted slip velocity agrees well with the experimental data in both columns. The virtual mass force has a small influence on the investigated bubbly flow characteristics. However, the lift force strongly influences the bubble plume dynamics and consequently determines the shape of the vertical velocity profile. In a taller column, the lift coefficient following from the model of Tomiyama produces the best results.  相似文献   

11.
The statistics of liquid-to-crystal nucleation are measured for clathrate-forming mixtures of tetrahydrofuran (THF) and water using an automatic lag time apparatus (ALTA). We measure the nucleation temperature using this new apparatus in which a single sample is repeatedly cooled, nucleated and thawed. This is done for a series of tetrahydrofuran concentrations and in several different sample tubes since the nucleation is heterogeneous and so occurring on the tube wall. The measurements are also done at the same concentrations and tubes but with an added catalyst, a single crystal of silver iodide.  相似文献   

12.
Conductivity measurements in PEO30MI polymer electrolytes with M=Li, Na, K, Rb, or Cs over the temperature range from about 65 to 200 °C show an increasing tendency for salt precipitation with increasing cation size. The salt precipitation in these complexes upon heating is revealed by the decrease of the dc conductivity starting at a critical temperature Tc. Whereas LiI and NaI complexes do not show precipitation effects, Tc monotonically decreases from about 140 to 65 °C when changing the salt component from KI via RbI to CsI. For the PEO-RbI system, precipitation is further investigated by nuclear magnetic resonance (NMR) and tracer diffusion experiments. NMR analysis unambiguously demonstrates the onset of RbI salt precipitation and the increase of the precipitate fraction with increasing temperature. In diffusion experiments on PEO30RbI with the radiotracers and , the precipitation effect is manifested by anomalous features in the penetration profiles, however, without noticeable changes in their depth range. Combining the resulting tracer diffusion coefficients with the dc conductivity data enables us to assess crucial parameters characterizing ionic transport in PEO30RbI.  相似文献   

13.
While slow granular flows have been an area of active research in recent years, heat transfer in flowing particulate systems has received relatively little attention. We employ a computational technique that couples the discrete element method (DEM), computational fluid dynamics (CFD), and heat transfer calculations to simulate realistic heat transfer in a rotary kiln. To maintain simplicity, while simulating the cylindrical kiln, we use a non-uniform grid in our code. Different materials, particle sizes, and rotation speeds are used to track the transition from convection-dominated heat transfer to conduction-dominated heat transfer. At low particle conductivities, the heat transfer is dominated by gas-solid conduction; however, at higher particle conductivities solid-solid conduction plays a more important role. Moreover, our results suggest that the rate of change of the average bed temperature can display a transition as the conductivity of the interstitial medium is increased. At low interstitial transport rates, such as in vacuum, high conductivity, high heat capacity particles get heated most rapidly, but with increased interstitial transport coefficients, lower heat capacity material may get heated faster despite lower values of conductivity.  相似文献   

14.
In this paper a numerical simulation study of dynamic behavior of a fluidized bed with liquid injection is presented. A continuum model has been developed taking into account the mass and energy balances of solid, gas as well as liquid to describe the temperature and concentration distributions in gas-solid-fluidized beds. The model considers the deposition efficiency of the liquid droplets as well as the influence of the spray nozzle region. For solving the non-linear partial differential equations with discrete boundary conditions a finite element method is used. Numerical computations have been done with two different schemes of time integration, a fully implicit and a semi implicit scheme. The complex correlations of mass and liquid flow rates, mass and heat transfer, drying, and transient two-dimensional air humidity, air temperature, particle wetting, liquid film temperature and particle temperature were simulated. The model was validated with transient measurements of the air temperature and air humidity at the outlet of a fluidized bed with water injection.  相似文献   

15.
Characterization of flow phenomena induced by ultrasonic horn   总被引:1,自引:0,他引:1  
Mean flow and turbulence parameters have been measured using laser Doppler anemometer (LDA) in ultrasound reactor. The effects of the ultrasonic power have been investigated over a power density (P/V) range of 15-. The liquid circulation velocities are dominant in the zone nearer to the source of energy and are substantially low at the walls and at the bottom of the reactor. The levels of turbulence kinetic energy and dissipation rate are high near the horn and decrease rapidly with increasing distance from the horn. Average turbulent normal stresses are larger than the turbulent shear stresses. However, they are much lower than stirred reactors when compared at the same power consumption per unit mass. Comparisons of LDA measurements and computational fluid dynamics (CFD) predictions have been presented. The good agreement indicates the validity of the CFD model. The flow information has been extended for the prediction of mixing time. For uniform mixing in ultrasound-assisted reactors, optimum power density and diameter of the vessel is needed, yet it is far less effective than conventional stirred vessel. The possibility of optimization has been suggested in terms of power dissipation and the vessel size.  相似文献   

16.
Diffusion of NaOH into a protein gel   总被引:1,自引:0,他引:1  
The diffusivity of NaOH in a layer of protein gel on an inert surface is measured by combining experimental study of the reactive dissolution of the gel with simulation of transport and reaction within the gel. Pure β-lactoglobulin gels, formed under three different gelation conditions, were used as a model system. The alkaline solutions cause the gel to swell, and destroy the interprotein interactions in the gel matrix. The swelling and cleavage reactions depend on the local concentration of hydroxide and so are sensitive to the rate of transport of hydroxide through the gel. Experiments were performed to determine the effect of the NaOH concentration on the hydroxide penetration thickness and on the velocity of the penetration front marked by phenolthalein indicator. Simple simulations and a more advanced semi-theoretical analysis were performed, with proteins being treated as ideal polyelectrolyte polymers. Both yielded good agreement with the experimental results. The effective diffusivity of NaOH in the protein gels was found to be similar to that in water. The analytical procedure can be extended in principle to any protein gel.  相似文献   

17.
Nano-particulate high surface area CeO2 was found to have a useful methanol decomposition activity producing H2, CO, CO2, and a small amount of CH4 without the presence of steam being required under solid oxide fuel cell temperatures, 700-1000 °C. The catalyst provides high resistance toward carbon deposition even when no steam is present in the feed. It was observed that the conversion of methanol was close to 100% at 850 °C, and no carbon deposition was detected from the temperature programmed oxidation measurement.The reactivity toward methanol decomposition for CeO2 is due to the redox property of this material. During the decomposition process, the gas-solid reactions between the gaseous components, which are homogeneously generated from the methanol decomposition (i.e., CH4, CO2, CO, H2O, and H2), and the lattice oxygen on ceria surface take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen ( can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reaction (CnHmnC+m/2H2). VO·· denotes an oxygen vacancy with an effective charge 2+. Moreover, the formation of carbon via Boudouard reaction (2COCO2+C) is also reduced by the gas-solid reaction of carbon monoxide with the lattice oxygen .At steady state, the rate of methanol decomposition over high surface area CeO2 was considerably higher than that over low surface area CeO2 due to the significantly higher oxygen storage capacity of high surface area CeO2, which also results in the high resistance toward carbon deposition for this material. In particular, it was observed that the methanol decomposition rate is proportional to the methanol partial pressure but independent of the steam partial pressure at 700-800 °C. The addition of hydrogen to the inlet stream was found to have a significant inhibitory effect on the rate of methanol decomposition.  相似文献   

18.
In order to elucidate the dynamic performance of the CO2 ocean disposal process, effects of operating parameters, such as gas flow rate, salinity and temperature, on the absorption of CO2 into seawater were examined. The rate-based model consisting of the rates of chemical reaction and gas-liquid mass transfer was developed for simulating dynamic process of CO2 ocean disposal. In modeling, non-ideal mixing characteristics in the gas and liquid phases are described using a tanks-in-series model with backflow. Experiments were performed to verify dynamic CO2 absorption prediction capability of the proposed model in a cylindrical bubble column. The operation was batch and continuous with respect to liquid phase and gas phase, respectively. Experimental results indicate that the CO2 gas injection rate increased the absorption rate but the increase in salinity concentration caused inhibition of the absorption of CO2. The proposed model could describe the present experimental results for the dynamic changes and the steady-state values of dissolved CO2 concentration and hydrogen ion concentration. The proposed model might effectively handle the prediction of the absorption of CO2 into seawater in the CO2 ocean disposal.  相似文献   

19.
We show that the ion transport properties previously established for several amorphous polyether-based electrolytes by tracer diffusion and conductivity measurements cannot be exclusively explained by triple ions or higher-order ionic clusters as the most significant mobile species. A combined analysis of the tracer diffusion and conductivity data at different concentrations and temperatures rather indicates that charged single ions and neutral ion pairs play a prominent role. In particular, it is found that the single anion controls the transport of negative charge. Allowing for positive and negative charge carriers of various size, the analysis is based on upper and lower limits derived for the charge diffusivity Dσ with respect to the cation and anion tracer diffusivity. The derived expressions have a general validity and may be applied to any electrolyte system for which a complete set of mass and charge transport data is available.  相似文献   

20.
Analysis of cake filtration was made by the numerical solution of the appropriate equations of change based on the multiphase flow theory with the assumption that the cake properties are functions of the particle phase compressive stress, ps. Unlike earlier studies which assume the relationship between ps and the pressure of the fluid phase, pl, to be ps+pl=0, other possibilities were also considered in view of the recent work of Tien et al. (Chem. Eng. Sci. 56 (2001) 5361).In addition to investigating the effect of the ps-pl relationship, comparisons of predicted filtration performance with experiments made it possible to substantiate earlier findings that the ps-pl relationship is system specific. The results of the analysis were also used to test the parameter sensitivity of predictions, namely, values of the parameters of the constitutive relationships (i.e. ?s vs. ps and α vs. ps, where ?s and α are the cake solidosity and specific cake resistance). This information, in turn, can be used as a bench mark for improving existing and developing new procedures for determining cake solidosity and permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号