首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 °C and 700 °C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 °C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H2O2/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 °C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed.  相似文献   

2.
Ultrasound-assisted oxidative desulfurization process (UAOD) was applied to reduce sulfur compounds of gas oil containing various types of sulfur content. The environmental regulation requires a very deep desulfurization to eliminate the sulfur compounds. UAOD is a promising technology with lower operating cost and higher safety and environmental protection. For the first time the typical phase transfer agent (tetraoctyl-ammonium-bromide) was replaced with isobutanol because using isobutanol is much more economical than TOAB, imposing no contamination. The reaction was carried out at optimal point with various temperatures, in single-, two- and three step-procedures, investigating the effect of gradual increase of H2O2 and TOAB being used instead of isobutanol. Total sulfur concentration in oil phase was analyzed by ASTM-D3120 method. The highest removal of about 90% for gas oil containing 9,500 mg/kg of sulfur was achieved in three-steps during 17 minutes of process at 62±2 °C when 180.3 mmol of H2O2 was used and extraction carried out by methanol.  相似文献   

3.
An improved process for high-quality diesel fuel production by hydrotreating atmospheric gas oil (SRGO) and light cycle oil (LCO) blends is presented in this paper. For this purpose, a set of blends of 5, 10 and 15% by volume of LCO with final boiling points of 300, 325 and 350 °C with a full range gas oil (FBP 350 °C) was hydrotreated in a pilot plant at 340-380 °C, 5.4 MPa, 2.5 h−1 LHSV using a commercial Co-Mo catalyst. A relationship between the concentration of refractory sulfur compounds (those boiling above 316 °C) and aromatics content in the feedstock with the hydrotreating temperature required for meeting a 0.05% sulfur specification was found.The experimental data obtained during the desulfurization was quantitatively represented by a 1.50 to 1.56 order rate equation, with activation energies between 18.9 and 34.1 kcal/mol, depending on the feedstock.  相似文献   

4.
The total development trend in the world is towards continuously lower of sulfur content as a quality standard of diesel fuels. Integrating of an oxidative desulfurization unit with a conventional hydrotreating unit can bring benefits to producing low and/or ultra-low sulfur diesel fuels. Using the hydrotreated Middle East diesel fuel as a feedstock, four processes of the oxidative desulfurization have been studied: a hydrogen peroxide–acetic acid system and a Fenton's reagent system both without/with ultrasound. Results showed that the oxidative desulfurization reaction mechanics fitted apparent first-order kinetics. The addition of Fenton's reagent could enhance the oxidative desulfurization efficiency for diesel fuels and sono-oxidation treatment in combination with Fenton's reagent shows a good synergistic effect. Under our best operating condition for the oxidative desulfurization: temperature 313 K, ultrasonic power 200 W, ultrasonic frequency 28 kHz, Fe2+/H2O2 0.05 mol/mol, pH 2.10 in aqueous phase and reaction time 15 min, the sulfur content in the diesel fuels was decreased from 568.75 μg/g to 9.50 μg/g.  相似文献   

5.
High sulfur level in diesel fuel has been identified as a major contributor to air pollutant in term of sulfur dioxide (SOx) through diesel fueled vehicles. The main aim of the present work is to develop a promising methodology for ultra deep desulfurization of diesel fuel using oxidation followed by phase transfer of oxidized sulfur. Experiments were carried out in a batch reactor using n-decane as the model diesel compound and also using commercial diesel feedstock. To remove sulfur tetraoctylammonium bromide, phosphotungstic acid, and hydrogen peroxide were used as phase transfer agent, catalyst and oxidant respectively. The percent sulfur removal increases with increasing the initial concentration of sulfur in fuel and with increasing the reaction temperature. Similar trends were observed when commercial diesel was used to carry out desulfurization studies. The amphiphilic catalyst serves as a catalyst and also as an emulsifying agent to stabilize the emulsion droplets. The effects of temperature, agitation speed, quantity of catalyst and the phase transfer agent were studied to estimate the optimal conditions for the reactions. The sulfur removal from a commercial diesel by phase transfer catalysis has been found effective and removal efficiency was more than 98%. Kinetic experiments carried out for the desulfurization revealed that the sulfur removal results are best fitted to a pseudo first order kinetics and the apparent activation energy of desulfurization was 30.6 kJ/mol.  相似文献   

6.
Bandar Alsolami 《Fuel》2011,90(10):3021-3027
This work investigates the feasibility of ultra-deep hydrodesulfurization (i.e. ?1 ppm of sulfur content) of several diesel feedstocks, viz., regular (R), premium (P) and hydrotreated straight-run (HSR) at low pressures, i.e. 10 bar, to lower significantly the operation costs. The premium and regular diesel contain additive packages with several components such as cetane boosters, antioxidants that show to negatively affect the sulfur conversion at low pressures. In the hydrotreated straight-run diesel fuel, which does not contain an additive package, total desulfurization can be obtained at 10 bar, T = 340 °C and LHSV = 1 h−1. As a model for the additive package, FAME (fatty acid methyl ester), an ingredient that encounters the demands of a sustainable future, was added to the hydrotreated straight-run diesel (HSR + FAME) in order to check its influence on the total sulfur conversion. Results show that this biofuel component hindered tremendously the sulfur removal process by lowering the sulfur removal from 98% to zero at 10 bar, probably by competitive adsorption. At higher pressures, e.g. 30 bar, when FAME was present, new sulfur compounds were formed during the HDS process and the effective sulfur removal was very low.  相似文献   

7.
Latest strict environmental regulations have restricted the sulfur content of diesel fuels; therefore, deep desulfurization of fuels is required. Ultrasound-assisted oxidative desulfurization (UAOD) is an alternative for conventional desulfurization methods which can remove sulfur compounds from fuels under mild process conditions. In this study, UAOD of gasoil using tungstophosphoric acid catalyst and tetraoctylammonium bromide as a phase transfer agent in the presence of hydrogen peroxide as an oxidant was optimized. The optimal design of experiments was generated based on central composite face-centered design of Response surface methodology (RSM) to study effects of four process variables such as oxidant volume, mass of catalyst, mass of phase transfer agent and the ultrasonic wave amplitude on the sulfur conversion of gasoil. In addition, a predictive model of sulfur conversion was obtained based on RSM. The optimal values of process variables were evaluated to be 21.96 mL of oxidant, 1 gr of catalyst and 0.1 gr of phase transfer agent to achieve the maximum sulfur conversion of 95.92%.  相似文献   

8.
Hai Mei  Teh Fu Yen 《Fuel》2003,82(4):405-414
Due to the requirement of stringent rules for ultra-low sulfur content of diesel fuels, it is necessary to develop alternative methods for desulfurization of fossil fuel derived oil. Using appropriate oxidants and catalysts with the assistance of ultrasound irradiation, model compounds such as dibenzothiophene can be quantitatively oxidized in minutes. For diesel fuels containing various levels of sulfur content, and through the use of catalytic oxidation and ultrasonication followed by solvent extraction, removal efficiency of sulfur-bearing compounds can reach or exceed 99% in a short contact time at ambient temperature and atmospheric pressure. This simple approach can be the basis for obtaining ultra-low sulfur-containing diesel oil. GC-PFPD, GC-MS, and GC-SIMDIS were used to monitor the change of organic sulfur compounds and hydrocarbons in diesels during the process.  相似文献   

9.
Production of diesel fuels with ultra-low-sulfur levels by deep desulfurization of gas oil feeds has received considerable importance in the petroleum refineries in recent years. The type of the gas oil feed and its distillation temperature play a key role in the deep desulfurization process. In the present research project, the effect of lowering the 95% distillation temperature (T95) of two gas oil feeds, namely, straight-run gas oil (SRGO) and coker gas oil (CGO), on deep desulfurization to ultra-low-sulfur levels was investigated. The results showed that for both types of feeds a higher degree of desulfurization was achieved with reduction of T95 from > 360 °C to < 340 °C. The refractory alkyl dibenzothiophenes boiling above 320 °C were present in very low concentrations in the low-boiling cuts and deep HDS to ultra-low-sulfur levels (< 50 ppm) was achieved at low severity operating conditions. Among the two feeds, the CGO that contained high nitrogen content, high concentrations of sterically hindered alkyl DBTs and high aromatics content (low feed saturation) was more difficult to desulfurize than SRGO.  相似文献   

10.
Guoxian Yu  Hui Chen  Zhongnan Zhu 《Carbon》2005,43(11):2285-2294
Desulfurization of diesel fuels with hydrogen peroxide was studied using activated carbons as the catalysts. Adsorption and catalytic properties of activated carbons for dibenzothiophene (DBT) were investigated. The higher the adsorption capacity of the carbons is, the better the catalytic performance in the oxidation of DBT is. The effect of aqueous pH on the catalytic activities of the activated carbons was also investigated. Oxidation of DBT is enhanced when the aqueous pH is less than 2, and addition of formic acid can promote the oxidation. The effect of carbon surface chemistry on DBT adsorption and catalytic activity was also investigated. Adsorption of DBT shows a strong dependence on carboxylic group content. The oxidative removal of DBT increases as the surface carbonyl group content increases. Oxidative desulfurization of a commercial diesel fuel (sulfur content, 800 wt. ppm) with hydrogen peroxide was investigated in the presence of activated carbon and formic acid. Much lower residual sulfur content (142 wt. ppm) was found in the oxidized oil after the oxidation by using the hydrogen peroxide-activated carbon-formic acid system, compared with a hydrogen peroxide-formic acid system. The resulting oil contained 16 wt. ppm of sulfur after activated carbon adsorption without any negative effects in the fuel quality, and 98% of sulfur could be removed from the diesel oil with 96.5% of oil recovery. Activated carbon has high catalytic activity and can be repeatedly used following simple water washing, with little change in catalytic performance after three regeneration cycles.  相似文献   

11.
Shuzhi Liu  Baochen Cui  Lanlan Sun 《Fuel》2008,87(3):422-428
Fe (VI) compound, such as K2FeO4, is a powerful oxidizing agent. Its oxidative potential is higher than KMnO4, O3 and Cl2. Oxidation activity of Fe (VI) compounds can be adjusted by modifying their structure and pH value of media. The reduction of Fe (VI), differing from Cr and Mn, results in a relatively non-toxic by-product Fe (III) compounds, which suggests that Fe (VI) compound is an environmentally friendly oxidant. Oxidation of model sulfur compound and diesel oil by K2FeO4 in water-phase, in organic acid and in the presence of phase-transfer catalysts is investigated, respectively. The results show that the activity of oxidation of benzothiophene (BT) and dibenzothiophene (DBT) is low in water-phase, even adding phase-transfer catalyst to the system, because K2FeO4 reacts rapidly with water to form brown Fe(OH)3 to lose ability of oxidation of organic sulfur compounds. The activity of oxidation of the BT and DBT increases markedly in acetic acid. Moreover, the addition of the solid catalyst to the acetic acid medium promotes very remarkably oxidation of organic sulfur compounds. Conversions of the DBT and BT are 98.4% and 70.1%, respectively, under the condition of room temperature, atmospheric pressure, acetic acid/oil (v/v) = 1.0, K2FeO4/S (mol/mol) = 1.0 and catalyst/K2FeO4 (mol/mol) = 1.0. Under the same condition, diesel oil is oxidized, followed by furfural extraction, the results display sulfur removal rate is 96.7% and sulfur content in diesel oil reduces from 457 ppm to 15.1 ppm.  相似文献   

12.
New requirements for very low sulfur content (10 ppm) in liquid motor fuels demand novel approaches for ultra-deep desulfurization. For production of near-zero-sulfur diesel and low-sulfur fuel oil, removal of refractory sulfur compounds, like 4,6-dimethyldibenzothiophene and other alkyl-substituted thiophene derivatives, is necessary. Elimination of these compounds by hydrodesulfurization (HDS) requires high hydrogen consumption, high pressure equipment, and new catalysts. Various oxidative desulfurization processes, including recent advances in this field for diesel fuels, and the drawbacks of this technology in comparison with HDS are examined and discussed. It is shown that the oxidation of sulfur compounds to sulfones with hydrogen peroxide allows for production of diesel fuels with a sulfur content of 10 ppmw or lower at atmospheric pressure and room temperature. The gas phase oxidative desulfurization of sulfur compounds with air or oxygen is feasible at atmospheric pressure and higher temperatures: 90–300 °С and offers better economic solutions and incentives.  相似文献   

13.
Dusadee Bunthid 《Fuel》2010,89(9):2617-2622
Waste tires are one potential source of alternative energy because of their long chain hydrocarbon with a high calorific heating value. However, the pyrolysis oil that is derived from waste tires is not appropriate for direct use in a combustion process due to its high sulfur content. Therefore, the oxidative desulfurization (ODS) process was evaluated for its ability to reduce the sulfur content of the naphtha fraction distillated from light oil derived from waste tire pyrolysis. The addition of formic acid to pH of 4.0 in the presence of 25 vol.% hydrogen peroxide (H2O2) and tire pyrolysis char enhanced the level of sulfur removal to ca. 70% due to the simultaneous adsorption and oxidation of sulfurous compounds on the surface of the pyrolysis char. The chemical treatment to form surface-modified char promoted the benefit for ODS process in the presence of formic acid (pH 4) and H2O2 (25 vol.%) by increasing the sulfur reduction in the pyrolysis naphtha up to 75%.  相似文献   

14.
The coal poly-generation system for the production of alcohol and ether fuels as well as power is one of advanced coal utilization techniques. The team leaded by Professor Xie Kechang is carrying out the research on the poly-generation system to produce the syngas from the combination of gasified and pyrolyzed coal gas (dual gas resources) for the alcohol ether synthesis. Gas desulfurization is one of the key technologies for this system. The desulfurization matching with dual gas resources based poly-generation system for the production of alcohol and ether fuels as well as power is presented according to gas components, sulfur content, sulfur species and desulfurization accuracy in this technology. This matching desulfurization is classified into hot gas desulfurization, normal gas desulfurization, warm gas desulfurization and organic sulfur catalytic conversion. The preparation of H2S removal sorbents, organic sulfur hydrolysis catalyst and the evaluation of their activities involved in the system were investigated. The H2S removal efficiencies of the crude and fine desulfurization sorbents prepared for hot gas desulfurization are 90% and 99% at 500 °C in simulating coal gas, and their sulfur capacities are 21.85 wt.% and 24.91 wt.%, respectively. The organic sulfur catalyst shows the high hydrolysis activity, and the hydrolysis conversion of COS is more than that of CS2 on the same catalyst. The research will provide necessary information for the matching desulfurization technology in the demonstration project on dual gas resources coal poly-generation system.  相似文献   

15.
杜春龙 《广州化工》2011,39(9):98-100
通过H2O2/HCOOH体系对柴油选择性氧化脱硫技术的研究。考察了H2O2/HCOOH体系反应温度、反应时间、剂油比等因素对氧化脱硫效果的影响。实验结果表明,温度为60℃,反应时间为30min,剂油比为1:15,在反应进行到25min时加入相转移催化剂脱硫率达最大,油脱硫率可达90.0%。  相似文献   

16.
Pavel Šimá?ek  David Kubi?ka 《Fuel》2010,89(7):1508-1513
Hydrocracking of pure petroleum vacuum distillate and the same fraction containing 5 wt.% of rapeseed oil was carried out at 400 and 420 °C and under a hydrogen pressure of 18 MPa over commercial Ni-Mo catalyst. Reaction products were separated by distillation into kerosene, gas oil and the residue. Fuel properties of fractions suitable for diesel production were evaluated (gas oils and remixed blends of kerosene and gas oil). Gas oils obtained from co-processing showed very good fuel properties as the remixed distillates did. Gas oil obtained from co-processing at 420 °C showed also reasonable key low-temperature properties (cloud point: −23 °C, CFPP: −24 °C) similar to those of gas oil obtained from pure petroleum raw material processing.  相似文献   

17.
连续式FCC柴油萃取-光催化氧化深度脱硫   总被引:3,自引:1,他引:2  
王磊  沈本贤  徐亚荣 《化工学报》2008,59(12):3085-3089
尽快降低燃料油中的硫含量是整个炼油业都无法回避的重大问题,炼油工业发达的国家已提出生产超低硫清洁燃料 (硫含量低于10 μg&#8226;g-1)的目标。本文通过连续式FCC柴油萃取-光催化深度脱硫工艺,对FCC柴油进行精制,精制油中硫含量采用硫氮荧光分析仪测定,硫含量为45 μg&#8226;g-1。实验结果表明:萃取操作的适宜条件为常压,萃取温度40℃,剂油比1.5∶1;反应操作的适宜条件为反应温度40℃,反应时间1 h,氧化剂用量为4%。在以上操作条件下,精制油中的硫含量为达到欧Ⅳ标准,精制油总收率超过96%。  相似文献   

18.
I. Sebos  V. Apostolopoulos 《Fuel》2009,88(1):145-149
The conversion of the esters included in refined cottonseed oil into hydrocarbon molecules compatible with petroleum diesel, which are named renewable diesel, has been studied at conventional hydrotreatment conditions. The vegetable oil was fed in mixture with desulphurized petroleum diesel to the hydrotreater containing a conventional CoMo/Al2O3 hydrotreatment catalyst. Conversion of esters was determined in the temperature range of 305-345 °C, at 30 bar and for 5 h−1 < WHSV < 25 h−1. Catalyst deactivation was followed for a period of 450 h in operation. A simple kinetic model of ester conversion suitable for scale-up and simulation studies has been tested.  相似文献   

19.
Biodiesel has been synthesized from karanja, mahua and hybrid {karanja and mahua (50:50 v/v)} feedstocks. A high yield in the range of 95-97% was obtained with all the three feedstocks. Conversion of vegetable oil to fatty acid methyl esters was found to be 98.6%, 95.71% and 94% for karanja, mahua and hybrid feedstocks respectively. The optimized reaction parameters were found to be 6:1 (methanol to oil) molar ratio, H2SO4 (1.5% v/v), at 55 ± 0.5 °C for 1 h during acid esterification for the three feedstocks. During alkaline transesterification, a molar ratio of 8:1 (methanol to oil), 0.8 wt.% KOH (wt/wt) at 55 ± 0.5 °C for 1 h was found to be optimum to achieve high yield for karanja oil. For mahua oil and the hybrid feedstock, 6:1 (methanol to oil) molar ratio, 0.75 (w/w) KOH at 55 ± 0.5 °C for 1 h was optimum for alkaline transesterification to obtain a high yield. High yield and conversion from hybrid feedstock during transesterification reaction was an indication that the reaction was not selective for any particular oil. 1H NMR has been used for the determination of conversion of the feedstock to biodiesel.  相似文献   

20.
The present work describes the desulfurization of coal using mildly reductive method. Both a Yanzhou and a Yanshan coal (referred to as YZ and YS coal, respectively), were treated in an aqueous media employing sodium borohydride (NaBH4) as reducing agent, which is a well known hydrogen storage. Reaction variables investigated include concentration of reductant, time, pH of initial media, temperature, stirring rate and particle size. The calorific values and ignition temperatures of the coal samples before and after treatment were determined. Results show that the total sulfur removal improved with the increase in the concentration of NaBH4, shaking rate and temperature and with the decrease in the particle size. Meanwhile, decreasing the particle size from − 250 to − 109 μm increased the organic sulfur removal by more than six times for either of the coal samples. Considering economic rationality and operational convenience, the desulfurization conditions determined were 1.6 mM of NaBH4 concentration, − 109 μm of particle size, neutral pH of initial media, 1 min of treated time, 100 rpm of shaking rate, 30 °C of temperature. This led to 23.8% and 59.0% reduction in the pyritic, 70.4% and 100% reduction in the sulfate, and 11.0% and 15.0% reduction in the organic sulfur, giving 31.3% and 40.8% reduction in the total sulfur for the YZ coal and the YS coal, respectively. Moreover, this resulted in the increase in the calorific values by 3.4-6.9% and the decrease in the ignition temperatures by 2-21 °C for the coal samples. The desulfurization method described here is extremely rapid, convenient, inexpensive and mild, and therefore, has considerable technological interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号