首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 796 毫秒
1.
普通混凝土易开裂,韧性较差。文中主要通过混凝土抗冲击试验,研究了在普通混凝土中掺入不同长度的合成聚丙烯纤维及聚丙烯腈纤维,以改善混凝土的脆性性能,提高混凝土的韧性。试验中在混凝土中分别掺入长度为20mm合成聚丙烯纤维、40mm合成聚丙烯纤维及单丝聚丙烯腈纤维,每种纤维掺量分别为1kg/m~3,3kg/m~3,6kg/m~3,9kg/m~3,通过改变纤维掺量研究不同掺量下合成纤维对混凝土抗冲击荷载的影响规律。实验研究结果表明:纤维混凝土的抗冲击性能随纤维掺量提高显著提升,纤维含量为9kg/m~3的40mm聚丙烯纤维混凝土试件其抗冲击韧性最好,相较于普通混凝土的抗冲击韧性提高了306.67%。  相似文献   

2.
纤维素纤维及混杂纤维混凝土的抗弯冲击性能   总被引:2,自引:0,他引:2  
为了研究不同纤维对混凝土冲击性能的影响,对天然纤维素纤维、钢纤维及混杂纤维混凝土的抗弯冲击性能进行了系统的试验研究;采用数理统计方法对其初裂冲击次数及破坏冲击次数进行了分析.试验结果表明:纤维素纤维对改善混凝土的初裂冲击性能效果显著,而钢纤维对改善带裂缝混凝土结构的冲击性能效果良好.纤维素纤维掺量为1.2kg/m~3时,纤维混凝土的初裂冲击次数与钢纤维掺量为64kg/m~3时相当,比素混凝土提高了2.4倍;掺量为78 kg/m~3的钢纤维和掺量为1.0 kg/m~3的纤维素纤维混掺时,混掺纤维混凝土的破坏冲击次数是素混凝土的8.1倍.纤维素纤维与钢纤维混杂使用时,可充分发挥各种纤维的优势,显著改善混凝土的抗弯冲击性能。  相似文献   

3.
选取强度等级CF40和CF50混凝土,在混杂纤维混凝土配合比三元叠加法试验基础上确定配合比:在钢纤维体积分数固定为1%时,聚丙烯纤维掺量在0.3~1.5 kg/m3内按级差0.3 kg/m3取5个水平;在聚丙烯纤维掺量为0.9 kg/m3时,钢纤维体积分数在0.5%~2.0%内按级差0.5%取4个水平,研究纤维的不同掺量对混凝土早龄期抗裂性能的影响以及试件裂缝形态的变化.结果表明,钢-聚丙烯纤维混杂具有耦合提高混凝土早龄期抗裂性能的作用,早龄期抗裂性能随纤维掺量的增加而提高;钢纤维体积分数和聚丙烯纤维掺量存在合理有效值.纤维混杂可以协同阻裂和限裂,使混凝土裂缝由宽、长形态调整为细、短形态.  相似文献   

4.
试验研究了聚丙烯纤维对桥面铺装轻骨料混凝土工作性能和强度的影响,探讨了对轻骨料预湿、掺入聚丙烯纤维及钢纤维与开裂时间、开裂面积、裂缝数量的关系.结果表明:聚丙烯纤维的掺入降低了轻骨料混凝土的流动性,当聚丙烯纤维掺量为1.2 kg/m3时,混凝土初始坍落度和扩展度仅为未掺聚丙烯纤维混凝土的69%和64%,当聚丙烯纤维掺量为0.6 kg/m3时,混凝土分层度较小;聚丙烯纤维在轻骨料混凝土中存在一个最佳掺量,当聚丙烯掺量为0.6 kg/m3时,混凝土28 d抗压强度变化不大,28 d抗折强度有一定提高.抗裂试验表明:对轻集料进行预湿处理和掺入纤维可以阻止和延缓混凝土早期塑性收缩产生的裂缝,提高混凝土的早期抗裂性能.  相似文献   

5.
玄武岩纤维混凝土的抗弯冲击性能   总被引:4,自引:0,他引:4  
为了研究玄武岩纤维对混凝土抗弯冲击性能的影响,对玄武岩纤维混凝土及素混凝土梁试件进行了系统的抗弯冲击性能试验。结果表明:玄武岩纤维混凝土B3(纤维掺量为2.8kg·m^-3)的初裂冲击次数比B2(纤维掺量为2.1kg·m^-3)、B1(纤维掺量为1.7kg·m^-3)分别提高了629/6和95%;玄武岩纤维混凝土B2的初裂冲击次数比B1提高了21%,玄武岩纤维混凝土B3的破坏冲击次数比B2、B1分别提高了59%和90%,玄武岩纤维混凝土B2的破坏冲击次数比B1提高了19%;纤维掺量由B2提高到B3时,对改善混凝土抗弯冲击性能效果十分显著;玄武岩纤维在合理掺量下可以显著改善混凝土的抗弯冲击性能。  相似文献   

6.
为分析不同掺量硅粉和聚丙烯纤维对再生混凝土梁抗裂性能的影响,对5根再生混凝土梁的开裂荷载、极限荷载、应力分布和荷载-挠度曲线进行了ANSYS有限元分析。结果表明:硅粉和聚丙烯纤维的掺入,提高了再生混凝土的强度和整体刚度,使得梁抵抗拉应力的能力提高,抗裂性能增强、延性提高,开裂荷载和极限荷载均增大。当硅粉掺量为8%,聚丙烯纤维掺量为0.9 kg/m3时,试件的开裂荷载和极限荷载达到最大值,分别为23.66 kN和128.5kN,较SF0P0均提高20%以上。  相似文献   

7.
针对普通混凝土易开裂、耐久性不良等问题,通过室内试验探讨聚丙烯纤维网混凝土的低温抗裂性能.利用weibull分布,研究在常温、冰冻及冻融循环状态下纤维掺量对水泥混凝土断裂能和疲劳寿命的影响.结果表明,聚丙烯纤维网具有提高混凝土耐久性的作用,冻融后抗压强度提高13.9%;早龄期抗裂性随着聚丙烯纤维掺量的增加而提高,在掺量为0.9 kg/m3时经济性最佳.  相似文献   

8.
在混凝土中加入不同掺量的聚丙烯纤维,形成聚丙烯纤维混凝土,通过立方体抗压强度试验、弯曲韧性试验、早期收缩抗裂试验,并与素混凝土试验结果进行对比,来确定不同掺量的聚丙烯纤维对于混凝土各个力学性能的影响,从而确定最佳的聚丙烯纤维掺量。  相似文献   

9.
聚酯纤维-聚合物乳液复合改性混凝土韧性研究   总被引:1,自引:0,他引:1  
研究了聚酯纤维(用量0~1.904kg/m3)、丁苯乳液(用量70~100kg/m3)在单掺、复掺情况下对水泥混凝土力学强度、弯曲韧性及抗冲击性能的影响。结果表明,单掺聚酯纤维或丁苯乳液均能改善其折压比、弯曲韧性及抗冲击性能,且随着掺量的增加呈现上升趋势;纤维-聚合物复掺时,其性能会得到进一步改善,且改性效果明显好于两者的单掺效果;纤维-聚合物复合改性混凝土的经济性明显好于聚合物改性混凝土;此外,探讨了纤维和聚合物对混凝土的复合改性机理。  相似文献   

10.
为了确定混凝土中聚丙烯纤维最优掺量,以有效改善混凝土的抗拉性能、抗折性能和韧性,文中通过制备纤维掺量分别为0,0.4,0.8,1.2,1.6 kg·m-3的C30聚丙烯纤维混凝土,试验研究其抗拉性能和抗折性能.结果表明:随着聚丙烯纤维掺量的增加,混凝土劈裂强度和抗拉强度呈先增后减的趋势,其中掺量为0.8 kg·m-3时...  相似文献   

11.
聚丙烯纤维混凝土在路面工程中的应用研究   总被引:6,自引:0,他引:6  
通过分析聚丙烯纤维对混凝土的增强作用 ,说明在混凝土中掺加适量的聚丙烯纤维能有效地提高混凝土材料的抗裂、抗冲击、抗冻性能 ,改善混凝土的抗疲劳特性 .文中还介绍了聚丙烯纤维混凝土在路面工程中的应用实例及设计施工方法  相似文献   

12.
在工程实践中,混凝土(砂浆)的裂缝问题越来越突出,采用聚丙烯纤维来解决混凝土开裂的问题是近年来广泛研究和应用的一种新的途径.其原理主要在于,混凝土中水泥作为胶凝材料来握裹纤维,这些纤维起到微细配筋作用,消耗混凝土变形开裂能量、提高韧性、撑托骨料和减少混凝土离析泌水,从而控制水泥基体内部微细裂的生成和扩展,提高混凝土的抗裂性能.笔者对纤维混凝土(砂浆)的性能进行了综合分析,得出了纤维混凝土(砂浆)在物理力学性能上的优势.  相似文献   

13.
基于SHPB试验的聚丙烯纤维增强混凝土动态力学性能研究   总被引:2,自引:0,他引:2  
采用变截面大尺寸Hopkinson压杆,对直径100 mm的两种聚丙烯纤维混凝土和素混凝土试件进行了冲击压缩试验,得到了不同应变率下试件的动态压缩强度及应力应变全过程曲线.从能量耗散的角度讨论了聚丙烯纤维对混凝土的增韧作用,用弹簧一摩擦块复合模型对聚丙烯纤维对混凝土的增韧机理进行了探讨.结果表明,在冲击压缩的高应变率加载条件下,在冲击压缩的初始阶段,聚丙烯纤维的增韧作用并不明显,在卸载阶段,聚丙烯纤维混凝土韧性要明显好于素混凝土.试验为聚丙烯纤维混凝土在防护工程领域与军事领域的应用提供了参考.  相似文献   

14.
利用聚丙烯纤维网和聚丙烯酰胺制备高柔韧性混凝土,通过强度试验和弯曲韧性试验,研究了聚丙烯纤维网和聚丙烯酰胺对混凝土韧性的改性效果,并通过扫描电镜对改性混凝土的微观结构进行了全面分析.试验结果表明聚丙烯纤维网和聚丙烯酰胺不仅能提高抗折强度和弯曲韧性,而且对混凝土微观结构的改善有显著作用,并可降低压折比,分析表明聚丙烯纤维网的最佳掺量为0.9kg/m3,聚丙烯酰胺的最佳掺量为8%.  相似文献   

15.
The compressive, shear strengths and abrasion-erosion resistance as well as flexural properties of two polypropyenc fiber reinforced concretes and the comparison with a steel fiber reinforced concrete were reported. The exprimental results show that a low content of polypropylene fiber (0.91 kg/m^3 of concrete ) slightly decreases the compressive and shear strengths, and appreciably increased the flexural strength, but obviously enhances the toughness index and fracture energy for the concrete with the same mix proportion, coasequently it plays a role of anti-cracking and improving toughness in concrete. Moreover, the polypropylene mesh fiber is better than the polypropylene monofilament fiber in improving flexaral strength and toughness of concrete, but the types of polypropylene fibers are inferior to steel fiber. All the polypropylene and steel fibers have no great beneficial effect on the abrasion-erosion resistance of concrete.  相似文献   

16.
为研究不同粗合成纤维用量下活性粉末混凝土的抗弯韧性,采用四点弯曲试验对粗合成纤维用量分别为4.75,9.5,14.25,19 kg ? m -3的纤维活性粉末混凝土试件进行了研究,同时与不掺入纤维的素活性粉末混凝土进行了对比分析。结果表明:不掺入纤维的素活性粉末混凝土弯拉试件发生脆性破坏,试件一裂即断,未得到荷载-挠度曲线的下降段;而粗合成纤维掺入后能够提高活性粉末混凝土的韧性,使弯拉试件转变为明显的延性破坏,荷载-挠度曲线都可得到稳定的下降段,同时曲线还出现了二次强化现象,有2个峰值;随着粗合成纤维掺量的增加,弯拉试件荷载-挠度曲线的下降段愈加平缓,韧性指数增大;粗合成纤维掺量(体积分数)为1.0%~2.0%时,剩余强度在抗折强度的85%以上,此时粗合成纤维对裂后基体具有较强的阻裂能力,能够大大提高弯拉试件开裂后的韧性。  相似文献   

17.
根据薄壁结构混凝土的特点,利用中热硅酸盐水泥优化设计出了C50抗渗防裂混凝土配合比。试验结果表明:聚丙烯纤维、钢纤维通过单掺或混掺配制的混凝土28d抗压强度均达到56MPa,抗渗等级P12,满足混凝土的抗渗防裂要求;且单掺聚丙烯的纤维混凝土表现出更优异的抗渗透能力和抗裂性能。SEM微观结构显示,掺膨胀剂混凝土中的水泥石结构均匀密实,产生的钙矾石水化产物丰富,对水泥石收缩具有明显补偿作用,提高了薄壁结构混凝土的抗渗防裂能力。  相似文献   

18.
微硅粉和聚丙烯纤维对混凝土抗裂性研究   总被引:1,自引:0,他引:1  
为使混凝土具有良好的耐久性,必须先解决混凝土的抗裂性.因此,在混凝土原材料中加入聚丙烯纤维、微硅粉、矿渣来优化混凝土的抗裂性.用试验手段和正交设计来分析不同掺量时聚丙烯纤维、微硅粉以及矿渣对混凝土抗裂性能的影响.试验结果显示:聚丙烯纤维对混凝土的性能影响尤为显著;掺入微硅粉有利于增强混凝土的抗压强度和抗抗劈裂强度;复合...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号