共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
多移动机器人合作系统中的单机控制体系结构研究 总被引:1,自引:4,他引:1
随着机器人技术的不断发展,出现了合作多移动机器人系统这一新的研究和应用领域,随之而来的是对机器人控制体系的新的要求.本文分析了合作多移动机器人系统对单机控制体系结构的要求,并以此为背景,在比较两种典型的智能机器人体系结构的基础上,提出一种混合分层的体系结构 相似文献
3.
多agent系统提供了一种解决复杂问题的分而治之的方法,这就使得agent间的相互协作成为多agent系统研究的一项重要内容,而系统的体系结构直接影响到agent之间的协作。文中主要讨论了基于体系结构的多agent协作,介绍了几种常见的多agent系统体系结构,并提出了一种基于联邦结构的agent协作。 相似文献
4.
自主式移动机器人系统的体系结构 总被引:6,自引:3,他引:6
本文在分析已有的几中多智能体协调模型的基础上,提出了一种用于自主式移动机器人系统的多智能体协调模型(离散)事件状态模型,用于组织协调自主式移动机器人系统中的传感器、规划、控制等智能体协调工作,确保自主式移动机器人在复杂、不断变化的环境中自主行驶,并在自主式移动机器人项目中较好地发挥了作用。 相似文献
5.
多agent系统提供了一种解决复杂问题的分而治之的方法,这就使得agent间的相互协作成为多agent系统研究的一项重要内容,而系统的体系结构直接影响到agent之间的协作.文中主要讨论了基于体系结构的多agent协作,介绍了几种常见的多agent系统体系结构,并提出了一种基于联邦结构的agent协作. 相似文献
6.
7.
8.
9.
针对以往自主移动机器人体系结构在实时处理方面的不足,提出了一种基于多智能体的混合式体系结构,统一规划了机器人系统的软硬件结构,在该体系结构中设计并实现了协调Agent和推理Agent两种智能体,针对紧急事件进行了更实时的Agent实现,有效的提高的自主移动机器人在突发事件时的实时性,提出了使用多样化的信息组织形式,增强了系统的自适应能力和易扩展性。本文的实验结果表明在紧急状态下,系统的反应时间有效缩短,增加了系统的智能性和实时性。 相似文献
10.
该文面向分布Agent多移动机器人系统,提出了一种适合于多移动机器人的机器人Agent分层式体系结构,包括状态监测层、决策规划层、协调控制层和行为控制层,其中状态监测层主要实现整个系统对外部环境的状态监测。决策规划层设定系统的全局目标和单个机器人的局部目标,合理快速地完成任务的分解和分配,实现机器人之间任务级之间的协作。协调控制层完成机器人之间的运动协调。行为控制器主要采用基于行为的方法实现具体的运动控制。该结构应用于RoboCup环境下的分布多机器人系统中,满足复杂的、动态的应用环境和系统要求。 相似文献
11.
12.
运动协调是多移动机器人系统领域的主要研究热点之一。在阐述多机器人合作与运动协调两者关系的基础上,给出了多机器人系统运动协调的问题描述及其分类;从主要研究方法的角度,归纳总结了多机器人系统运动协调的国内外研究动态。最后,对运动协调在多移动机器人系统领域的前景和研究方向作出了展望。 相似文献
13.
To get the best features of both deliberative and reactive controllers, present mobile robot control architectures are designed to accommodate both types of controller. However, these architectures are still very rigidly structured thus deliberative modules are always assigned to the same role as a high-level planner or sequencer while low-level reactive modules are still the ones directly interacting with the robot environment. Furthermore, within these architectures communication and interface between modules are if not strongly established, they are very complex thus making them unsuitable for simple robotic systems. Our idea in this paper is to present a control architecture that is flexible in the sense that it can easily integrate both reactive and deliberative modules but not necessarily restricting the role of each type of controller. Communication between modules is through simple arbitration schemes while interface is by connecting a common communication line between modules and simple read and/or write access of data objects. On top of these features, the proposed control architecture is scalable and exhibits graceful degradation when some of the modules fail, similar to the present mobile robot architectures. Our idea has enabled our four-legged robot to walk autonomously in a structured uneven terrain. 相似文献
14.
Managing Complexity in Large Learning Robotic Systems 总被引:1,自引:0,他引:1
Kynan Eng Alec P. Robertson Deane R. Blackman 《Journal of Intelligent and Robotic Systems》2000,27(3):263-273
Autonomous learning systems of significant complexity often consist of several interacting modules or agents. These modules collaborate to produce a system which, when viewed as a whole, exhibit behaviour that can be interpreted in some way as learning. In designing these systems, the complexity of the interactions of large numbers of modules can become overwhelming, making debugging difficult and obscuring the workings of the system when viewed from an architectural level. A way of controlling system complexity called the Layered Learning System architecture (LLS) has been developed, which offers the advantages of incremental development and testing, easier debugging and progressive upgrading facilitation. A hexapod robot has been implemented using LLS principles, with the main learning task being that of learning to walk as fast as possible without falling over. 相似文献
15.
16.
Terry L. Huntsberger Ashitey Trebi-Ollennu Hrand Aghazarian Paul S. Schenker Paolo Pirjanian Hari Das Nayar 《Autonomous Robots》2004,17(1):79-92
NASA mission concepts for the upcoming decades of this century include exploration of sites such as steep cliff faces on Mars, as well as infrastructure deployment for a sustained robotic/manned presence on planetary and/or the lunar surface. Single robotic platforms, such as the Sojourner rover successfully flown in 1997 and the Mars Exploration Rovers (MER) which landed on Mars in January of 2004, have neither the autonomy, mobility, nor manipulation capabilities for such ambitious undertakings. One possible approach to these future missions is the fielding of cooperative multi-robot systems that have the required onboard control algorithms to more or less autonomously perform tightly coordinated tasks. These control algorithms must operate under the constrained mass, volume, processing, and communication conditions that are present on NASA planetary surface rover systems. In this paper, we describe the design and implementation of distributed control algorithms that build on our earlier development of an enabling architecture called CAMPOUT (Control Architecture for Multi-robot Planetary Outposts). We also report on some ongoing physical experiments in tightly coupled distributed control at the Jet Propulsion Lab in Pasadena, CA where in the first study two rovers acquire and carry an extended payload over uneven, natural terrain, and in the second three rovers form a team for cliff access. 相似文献
17.
18.
针对多机器人在编队行进过程中的行为选择问题进行了分析,提出一种实现多移动机器人编队的行为选择机制。通过计算机仿真和实验研究,结果表明该控制策略能很好的实现多机器人快速编队,并在编队过程中实现运动状态的平滑变化,提高了整个系统性能。 相似文献