首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, Reverse k Nearest Neighbors (RkNN) queries, returning every answer for which the query is one of its k nearest neighbors, have been extensively studied on the database research community. But the RkNN query cannot retrieve spatio-textual objects which are described by their spatial location and a set of keywords. Therefore, researchers proposed a RSTkNN query to find these objects, taking both spatial and textual similarity into consideration. However, the RSTkNN query cannot control the size of answer set and to be sorted according to the degree of influence on the query. In this paper, we propose a new problem Ranked Reverse Boolean Spatial Keyword Nearest Neighbors query called Ranked-RBSKNN query, which considers both spatial similarity and textual relevance, and returns t answers with most degree of influence. We propose a separate index and a hybrid index to process such queries efficiently. Experimental results on different real-world and synthetic datasets show that our approaches achieve better performance.  相似文献   

2.
With the rocket development of the Internet, WWW(World Wide Web), mobile computing and GPS (Global Positioning System) services, location-based services like Web GIS (Geographical Information System) portals are becoming more and more popular. Spatial keyword queries over GIS spatial data receive much more attention from both academic and industry communities than ever before. In general, a spatial keyword query containing spatial location information and keywords is to locate a set of spatial objects that satisfy the location condition and keyword query semantics. Researchers have proposed many solutions to various spatial keyword queries such as top-K keyword query, reversed kNN keyword query, moving object keyword query, collective keyword query, etc. In this paper, we propose a density-based spatial keyword query which is to locate a set of spatial objects that not only satisfies the query’s textual and distance condition, but also has a high density in their area. We use the collective keyword query semantics to find in a dense area, a group of spatial objects whose keywords collectively match the query keywords. To efficiently process the density based spatial keyword query, we use an IR-tree index as the base data structure to index spatial objects and their text contents and define a cost function over the IR-tree indexing nodes to approximately compute the density information of areas. We design a heuristic algorithm that can efficiently prune the region according to both the distance and region density in processing a query over the IR-tree index. Experimental results on datasets show that our method achieves desired results with high performance.  相似文献   

3.
It is widely recognized that the integration of information retrieval (IR) and database (DB) techniques provides users with a broad range of high quality services. Along this direction, IR-styled m-keyword query processing over a relational database in an rdbms framework has been well studied. It finds all hidden interconnected tuple structures, for example connected trees that contain keywords and are interconnected by sequences of primary/foreign key relationships among tuples. A new challenging issue is how to monitor events that are implicitly interrelated over an open-ended relational data stream for a user-given m-keyword query. Such a relational data stream is a sequence of tuple insertion/deletion operations. The difficulty of the problem is related to the number of costly joins to be processed over time when tuples are inserted and/or deleted. Such cost is mainly affected by three parameters, namely, the number of keywords, the maximum size of interconnected tuple structures, and the complexity of the database schema when it is viewed as a schema graph. In this paper, we propose new approaches. First, we propose a novel algorithm to efficiently determine all the joins that need to be processed for answering an m-keyword query. Second, we propose a new demand-driven approach to process such a query over a high speed relational data stream. We show that we can achieve high efficiency by significantly reducing the number of intermediate results when processing joins over a relational data stream. The proposed new techniques allow us to achieve high scalability in terms of both query plan generation and query plan execution. We conducted extensive experimental studies using synthetic data and real data to simulate a relational data stream. Our approach significantly outperforms existing algorithms.  相似文献   

4.
Aggregate keyword search on large relational databases   总被引:1,自引:1,他引:1  
Keyword search has been recently extended to relational databases to retrieve information from text-rich attributes. However, all the existing methods focus on finding individual tuples matching a set of query keywords from one table or the join of multiple tables. In this paper, we motivate a novel problem of aggregate keyword search: finding minimal group-bys covering a set of query keywords well, which is useful in many applications. We develop two interesting approaches to tackle the problem. We further extend our methods to allow partial matches and matches using a keyword ontology. An extensive empirical evaluation using both real data sets and synthetic data sets is reported to verify the effectiveness of aggregate keyword search and the efficiency of our methods.  相似文献   

5.
We introduce a new cryptographic primitive, called proxy re-encryption with keyword search, which is motivated by the following scenario in email systems: Charlie sends an encrypted email, which contains some keywords, such as “urgent”, to Alice under Alice’s public key, and Alice delegates her decryption rights to Bob via her mail server. The desired situations are: (1) Bob can decrypt mails delegated from Alice by using only his private key, (2) Bob’s mail gateway, with a trapdoor from Bob, can test whether the email delegated from Alice contains some keywords, such as “urgent”, (3) Alice and Bob do not wish to give the mail server or mail gateway the access to the content of emails.The function of proxy re-encryption with keyword search (PRES) is the combination of proxy re-encryption (PRE) and public key encryption with keyword search (PEKS). However, a PRES scheme cannot be obtained by directly combining those two schemes, since the resulting scheme is no longer proven secure in our security model. In this paper, a concrete construction is proposed, which is proven secure in the random oracle model, based on the modified Decisional Bilinear Diffie-Hellman assumption.  相似文献   

6.
Processing keyword search on XML: a survey   总被引:1,自引:0,他引:1  
Ziyang Liu  Yi Chen 《World Wide Web》2011,14(5-6):671-707
Keyword search is a user-friendly approach for users to retrieve information from XML data. Since an XML document can have a large size and contain a lot of information, an XML keyword search result should be a fragment of an XML document dynamically constructed at query time, which is achievable due to the structuredness of XML. Processing keyword searches on XML has several challenges, e.g., what are the elements in the XML document that are relevant to the query? How to generate the results efficiently and rank the results meaningfully? How to present the results to the user in a way such that the user can quickly find the desired information? In this survey, we review the papers in the literature that attempted to address these problems. We divide the existing approaches into several classes based on the problem they tackled, and perform a comprehensive analysis of these works.  相似文献   

7.
The fast development of GPS equipped devices has aroused widespread use of spatial keyword querying in location based services nowadays. Existing spatial keyword query methodologies mainly focus on the spatial and textual similarities, while leaving the semantic understanding of keywords in spatial Web objects and queries to be ignored. To address this issue, this paper studies the problem of semantic based spatial keyword querying. It seeks to return the k objects most similar to the query, subject to not only their spatial and textual properties, but also the coherence of their semantic meanings. To achieve that, we propose novel indexing structures, which integrate spatial, textual and semantic information in a hierarchical manner, so as to prune the search space effectively in query processing. Extensive experiments are carried out to evaluate and compare them with other baseline algorithms.  相似文献   

8.
针对关系数据库关键词查询系统中的结果排序问题,提出了一种新的排序方法.该方法结合了查询相关性和结构权重,将单个元组看作是一个虚拟文档,通过对元组引入信息检索(information retrieval,JR)式评分方式,采用标准化词频和标准化逆文档频率说明元组与查询条件之间的相关性程度,对整个结果采用结构权重来反应结果的语义强度.相比于以往只考虑结构权重的排序方法,该方法能更有效的将与查询高度相关的结果排在前面.实验结果表明,结合查询相关性的排序方法可以有效的对结果进行排序.  相似文献   

9.
Intense regulatory focus on secure retention of electronic records has led to a need to ensure that records are trustworthy, i.e., able to provide irrefutable proof and accurate details of past events. In this paper, we analyze the requirements for a trustworthy index to support keyword-based search queries. We argue that trustworthy index entries must be durable—the index must be updated when new documents arrive, and not periodically deleted and rebuilt. To this end, we propose a scheme for efficiently updating an inverted index, based on judicious merging of the posting lists of terms. Through extensive simulations and experiments with two real world data sets and workloads, we demonstrate that the scheme achieves online update speed while maintaining good query performance. We also present and evaluate jump indexes, a novel trustworthy and efficient index for join operations on posting lists for multi-keyword queries. Jump indexes support insert, lookup and range queries in time logarithmic in the number of indexed documents.  相似文献   

10.
Domain-specific Web search with keyword spices   总被引:4,自引:0,他引:4  
Domain-specific Web search engines are effective tools for reducing the difficulty experienced when acquiring information from the Web. Existing methods for building domain-specific Web search engines require human expertise or specific facilities. However, we can build a domain-specific search engine simply by adding domain-specific keywords, called "keyword spices," to the user's input query and forwarding it to a general-purpose Web search engine. Keyword spices can be effectively discovered from Web documents using machine learning technologies. The paper describes domain-specific Web search engines that use keyword spices for locating recipes, restaurants, and used cars.  相似文献   

11.
Attribute-based encryption with keyword search (ABKS) enables data owners to grant their search capabilities to other users by enforcing an access control policy over the outsourced encrypted data. However, existing ABKS schemes cannot guarantee the privacy of the access structures, which may contain some sensitive private information. Furthermore, resulting from the exposure of the access structures, ABKS schemes are susceptible to an off-line keyword guessing attack if the keyword space has a polynomial size. To solve these problems, we propose a novel primitive named hidden policy ciphertext-policy attribute-based encryption with keyword search (HP-CPABKS). With our primitive, the data user is unable to search on encrypted data and learn any information about the access structure if his/her attribute credentials cannot satisfy the access control policy specified by the data owner. We present a rigorous selective security analysis of the proposed HP-CPABKS scheme, which simultaneously keeps the indistinguishability of the keywords and the access structures. Finally, the performance evaluation verifies that our proposed scheme is efficient and practical.  相似文献   

12.
As probabilistic data management is becoming one of the main research focuses and keyword search is turning into a more popular query means, it is natural to think how to support keyword queries on probabilistic XML data. With regards to keyword query on deterministic XML documents, ELCA (Exclusive Lowest Common Ancestor) semantics allows more relevant fragments rooted at the ELCAs to appear as results and is more popular compared with other keyword query result semantics (such as SLCAs). In this paper, we investigate how to evaluate ELCA results for keyword queries on probabilistic XML documents. After defining probabilistic ELCA semantics in terms of possible world semantics, we propose an approach to compute ELCA probabilities without generating possible worlds. Then we develop an efficient stack-based algorithm that can find all probabilistic ELCA results and their ELCA probabilities for a given keyword query on a probabilistic XML document. Finally, we experimentally evaluate the proposed ELCA algorithm and compare it with its SLCA counterpart in aspects of result probability, time and space efficiency, and scalability.  相似文献   

13.
杨宁  陈群 《计算机工程与应用》2013,49(1):137-140,151
Dewey码是XML关键字检索中采用的重要编码方式。在目前的研究当中,Dewey码通常以字符形式进行存储,这种方式造成Dewey码存储代价过大,并且在LCA求解过程中也必须通过字符比较才能获得Dewey码各层的数值,影响LCA求解效率。提出采用前缀共享和变长整形编码思路的PSVL存储方式,在消除字符比较操作的同时减少了Dewey码集合的存储代价。实验证明利用该存储方式对Dewey码集合进行存储,可以有效地降低其存储代价,并且减少获取Dewey码各层数值这一步骤花费的时间,间接提高了LCA的求解效率。  相似文献   

14.
Journal of Computer Virology and Hacking Techniques - m-Health stands for mobile health, where mobile devices are used for collecting and distributing health-related data. As the information...  相似文献   

15.
Keyword based search systems are becoming increasingly popular and are considered a key feature in many information management systems. Keyword based search approaches have the significant advantage of not requiring users to know how data is organized or stored. Typical approaches assume the dataset to be modeled as a graph, where answers to queries are sub-graphs ranked according to some criteria. Exploring the graph and building and ranking quality pose a number of challenges. In this paper, we discuss Yaanii, an approach for effective Keyword Search over graph-modeled Web data. Yaanii contains a novel approach to keyword search, by extracting the best results from the first set of answers and then combining a solution building algorithm with a ranking technique. In addition to the algorithms and the processes for building result sets, we provide a detailed study of the computational and ranking complexity of Yaanii and compare it with other approaches. We show that Yaanii is superior in terms of efficiency and quality of returned results from both the experimental and theoretical aspects.  相似文献   

16.
Emerging applications such as personalized portals, enterprise search, and web integration systems often require keyword search over semi-structured views. However, traditional information retrieval techniques are likely to be expensive in this context because they rely on the assumption that the set of documents being searched is materialized. In this paper, we present a system architecture and algorithm that can efficiently evaluate keyword search queries over virtual (unmaterialized) XML views. An interesting aspect of our approach is that it exploits indices present on the base data and thereby avoids materializing large parts of the view that are not relevant to the query results. Another feature of the algorithm is that by solely using indices, we can still score the results of queries over the virtual view, and the resulting scores are the same as if the view was materialized. Our performance evaluation using the INEX data set in the Quark (Bhaskar et al. in Quark: an efficient XQuery full-text implementation. In: SIGMOD, 2006) open-source XML database system indicates that the proposed approach is scalable and efficient.  相似文献   

17.
Providing built-in keyword search capabilities in RDBMS   总被引:2,自引:0,他引:2  
A common approach to performing keyword search over relational databases is to find the minimum Steiner trees in database graphs transformed from relational data. These methods, however, are rather expensive as the minimum Steiner tree problem is known to be NP-hard. Further, these methods are independent of the underlying relational database management system (RDBMS), thus cannot benefit from the capabilities of the RDBMS. As an alternative, in this paper we propose a new concept called Compact Steiner Tree (CSTree), which can be used to approximate the Steiner tree problem for answering top-k keyword queries efficiently. We propose a novel structure-aware index, together with an effective ranking mechanism for fast, progressive and accurate retrieval of top-k highest ranked CSTrees. The proposed techniques can be implemented using a standard relational RDBMS to benefit from its indexing and query-processing capability. We have implemented our techniques in MYSQL, which can provide built-in keyword-search capabilities using SQL. The experimental results show a significant improvement in both search efficiency and result quality comparing to existing state-of-the-art approaches.  相似文献   

18.
19.
Mobile computing over intelligent mobile is affecting human’s habits of obtaining information over Internet, especially keyword search. Most of previous keyword search works are mainly focused on traditional web data sources, in which the performance can be improved by adding more computing power and/or building more offline-computed index. However, it is very challenging to apply the traditional keyword search methods to mobile web-based keyword search because mobile computing has many different features, e.g., frequent disconnections, variety of bandwidths, limited power of mobile devices, limited data size to be downloaded, etc.. To address this challenge, in this paper we design an adaptive mobile-based XML keyword search approach, called XBridge-Mobile, that can derive the semantics of a keyword query and generate a set of effective structured patterns by analyzing the given keyword query and the schemas of XML data sources. Each structured pattern represents one of user’s possible search intentions. The patterns will be firstly sent to the mobile client from web server. And then, the mobile client can select some interested patterns to load the results. By doing this, we can reduce the communication cost a lot between web server and mobile client because only the derived patterns and a few results need to be transferred, not all the keyword search results, by which we can save lots of expenses when the downloaded data is priced. In addition, we can economically maintain the frequent structured pattern queries in the mobile device, which can further reduce the expense of downloading data. At last, we analyze and propose a ranking function to measure the quality of keyword search results, design a set of algorithms to optimize mobile keyword search based on the maintained structured patterns, and present the experimental study of XBridge-Mobile with real XML datasets.  相似文献   

20.
Existing work of XML keyword search focus on how to find relevant and meaningful data fragments for a query, assuming each keyword is intended as part of it. However, in XML keyword search, user queries usually contain irrelevant or mismatched terms, typos etc, which may easily lead to empty or meaningless results. In this paper, we introduce the problem of content-aware XML keyword query refinement, where the search engine should judiciously decide whether a user query Q needs to be refined during the processing of Q, and find a list of promising refined query candidates which guarantee to have meaningful matching results over the XML data, without any user interaction or a second try. To achieve this goal, we build a novel content-aware XML keyword query refinement framework consisting of two core parts: (1) we build a query ranking model to evaluate the quality of a refined query RQ, which captures the morphological/semantical similarity between Q and RQ and the dependency of keywords of RQ over the XML data; (2) we integrate the exploration of RQ candidates and the generation of their matching results as a single problem, which is fulfilled within a one-time scan of the related keyword inverted lists optimally. Finally, an extensive empirical study verifies the efficiency and effectiveness of our framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号