首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Restoring soil fertility in smallholder farming systems is essential to sustain crop production. An experiment was conducted in 2011 and 2012 to study the effect of compost and inorganic fertilizer application on soil chemical properties and wheat yield in northwest Ethiopia. Full factorial combinations of four levels of compost (0, 4, 6, 8 t ha?1) and three levels of inorganic fertilizers (0–0, 17.3–5, 34.5–10 kg N–P ha?1) were compared in a randomized complete block design with three replications. In 2012, two sets of trials were conducted: one was the repetition of the 2011 experiment on a new experimental plot and the second was a residual effect study conducted on the experimental plots of 2011. Results showed that in the year of application, applying 6 t compost ha?1 with 34.5–10 kg N–P ha?1 gave the highest significant grain yield. In the residual effect trial, 8 t compost ha?1 with 34.5–10 kg N–P ha?1 gave 271 % increase over the control. Grain protein content increased 21 and 16 % in the current and residual effect trials, respectively, when 8 t compost ha?1 was applied; it increased 11 and 14 % in the current and residual effect trials, respectively, when 34.5–10 kg N–P ha?1 was applied. Under the current and residual effects of 8 t compost ha?1, SOM increased 108 and 104 %; available P 162 and 173 %; exchangeable Ca 16.7 and 17.4 %; and CEC 15.4 and 17.1 %, respectively. Applying 6 t compost ha?1 with 34.5–10 kg N–P ha?1 is economically profitable with 844 % MRR.  相似文献   

2.
The rapidly increasing population and associated quest for food and feed in China has led to increased soil cultivation and nitrogen (N) fertilizer use, and as a consequence to increased wind erosion and unbalanced crop nutrition. In the study presented here, we explored the long-term effects of various combinations of maize stover, cattle manure and nitrogen (N) and phosphorus (P) fertilizer applications on maize (Zea mays L.) yield and nutrient and water use efficiencies under reduced tillage practices. In a companion paper, we present the effects on nutrient balances and soil fertility characteristics. The ongoing factorial field trial was conducted at Shouyang Dryland Farming Experimental Station in northern China from 1993 onwards. The incomplete, determinant-optimal design comprised 12 treatments, including a control treatment, in duplicate. Grain yields and N, P, and potassium (K) uptakes and N, P and K use efficiencies were greatly influenced by the amount of rain during the growing season (GSR), and by soil water at sowing (SWS). There were highly significant interactions between GSR and added stover and manure, expressed in complex annual variations in grain yield and N, P and K use efficiencies. Annual mean grain yields ranged from 3,000 kg ha−1 to 10,000 kg ha−1 and treatment mean yields from 4,500 kg ha−1 to 7,000 kg ha−1. Balanced combination of stover (3,000–6,000 kg), manure (1,500–6,000 kg) and N fertilizer (105 kg) gave the highest yield. Stover and manure were important for supplying K, but the effects differed greatly between years. Overall mean N recovery efficiency (NRE) ranged from 28% to 54%, depending on N source. NRE in wet years ranged from 50% to 90%. In conclusion, balanced combinations of stover, manure and NP fertilizer gave the highest yield and NRE. Reduced tillage with adding stover and manure in autumn prior to ploughing is effective in minimizing labor requirement and wind erosion. The potentials of split applications of N fertilizer, targeted to the need of the growing crop (response farming), should be explored to further increase the N use efficiency.  相似文献   

3.
The objective of this study was to quantify nitrogen (N), phosphorus (P), and potassium (K) use and cycling in a dairy farming system. The data were collected from the experimental farm at the National Institute of Livestock and Grassland Science in Tochigi Prefecture, Japan, using about 11 ha of forage crop fields and about 30 dairy cows. Forage crops grown in the field were ensiled and offered to the cows, and the subsequent compost from the animals’ excretion was applied to the field. The dairy farming system consisted of soil/crop, feed storage, animal, and compost components. Nutrient inputs and outputs and flows of the soil–plant–animal pathway for the whole farm and each component were measured for 5 years. Nutrient utilization was evaluated using nutrient balances, use efficiencies, and cycling indices. The 5 year average nutrient balances and nutrient use efficiencies of N, P, and K for the whole farm (kg ha?1 year?1) were 378, 97, and 199 and 0.25, 0.19, and 0.18, respectively. The characteristics of nutrient balances and use efficiencies for each component differed among N, P, and K. The average cycling indices of N, P, and K were 0.12, 0.11, and 0.37, respectively. Significant positive relationships between use efficiencies and cycling indices were observed in N and K. Year-to-year variations in flows were relatively large for compost application. The results suggested that improving N balance would be the most effective option for solving many of the environmental problems related to dairy farming.  相似文献   

4.
A variety of process-based models have been developed for predicting nitrogen (N) dynamics in agro-ecosystem; however, no reliable models have been validated for N leaching from soils receiving a long-term application of different types of animal manure composts. The Leaching Estimation and Chemistry Model (LEACHM) was recently modified by incorporating the basic structure of Rothamsted Carbon Model for extending its ability to describe soil organic matter decomposition and subsequent N leaching in soils rich in organic matter. We evaluate the applicability of the modified LEACHM in cropped Yellow soils receiving 10-year application of cattle or swine manure compost in addition to chemical fertilizers, where high-frequency field monitoring data of soil water contents, soil N contents and leachate N concentrations were available for the last 3 years. Particular attention was paid to determine all input parameters from independent measurements, parameterization from known soil properties or databases without optimisation to fit the measured field data. The model reasonably predicted temporal changes in the soil NH4-N and NO3-N contents, and inorganic N concentrations in the leachate as well as their differences due to different manure compost/chemical fertilizer applications. The simulations of leached N concentration yielded a Willmott index of agreement (IA) of 0.62–0.68, with those for soil moisture, soil nitrate content and crop N uptake all within an acceptable IA range. In view of the good performance without site-specific calibrations, the modified LEACHM appears to be a valuable tool for predicting N leaching from cropped soils receiving long-term manure compost applications.  相似文献   

5.
To improve synchronicity between nutrients released from the decomposing manure with millet nutrient requirement under zaï technique, a 2-year field experiment was conducted at the International Crops Research Institute for the Semi-Arid Tropics Research Station, Sadoré, Niger. The treatments consisted of factorial combination of two rates of cattle manure (200 and 300 g per zaï hole), three periods of manure application (before planting, at planting and 15 days later) and two rates of mineral fertilizer [nitrogen (N), phosphorus (P) and potassium (K) 15–15–15] applied at 6 g per zaï hole and a control, without mineral fertilizer). Manure dry mass losses did not significantly differ among manure application periods in 2013. However, in 2014 the highest manure dry mass loss occurred when manure was applied before planting with 70% of manure applied being decomposed at millet maturity stage (115 days after litterbag installation) followed by manure applied at planting with almost 50% of dry mass losses. The quantities of N and P absorbed by millet at tillering stage represented, 61, 52 and 33% of N released and 15, 12 and 15% of P released at the same time when manure was applied before planting, at planting and 15 days after planting, respectively. Application of manure before planting increased on an average millet grain yield by 16 and 20% and N utilization efficiency by 25 and 31% compared to application of manure at planting and 15 days after planting respectively. Addition of mineral fertilizer induced a synergetic effect on millet grain yield (p = 0.002). Millet grain yields increased on average by 5, 17 and 57% when 6 g per zaï pit of NPK fertilizer were added to plots receiving manure application before planting, at planting and 15 days after planting, respectively. We conclude that application of manure prior to planting satisfies better millet nutrients demand, thereby increasing nutrient use efficiency and grain yield under zai pits.  相似文献   

6.
Nitrogen use efficiency in different rice-based rotations in southern China   总被引:2,自引:0,他引:2  
Experiments in fields and micro-plots were conducted to investigate the optimal cropping system and nitrogen (N) fertilizer application rate and timing. The treatments consisted of Chinese milk vetch–rice (CMV–R) rotation with five N fertilizer application rates (0, 120, 180, 240, 300 kg N ha?1) during the rice-growing season, and fallow–rice (F–R) and wheat–rice (W–R) rotations with only one N application rate (240 kg N ha?1) each. Rice yield increased with increasing N fertilizer application rate under CMV–R rotation, and achieved highest yield under CMV–R180. There is a decreasing trend when N application rate exceeded 180 kg N ha?1. Rice yield was always higher under CMV–R240 compared to W–R240 and F–R240. During the 2012 rice season, the fertilizer N-use efficiency, residual N fertilizer in soil and N fertilizer recovery efficiency of CMV–R180 reached largest under CMV–R rotation with different N treatments. Furthermore, the fertilizer N-use and recovery efficiencies of CMV–R240 and F–R240 were far higher than those of W–R240. In 2013, fertilizer N-use efficiency was the highest (>?50%) at the heading stage, which was nearly twice as much as the efficiencies during the basal and tillering stages. The N fertilizer loss rate during the basal stage was significantly higher than that at the tillering and heading stages, which was up to 60%. CMV–R rotation with 180 kg N ha?1 achieved the highest rice yield of 9454 kg ha?1 and high fertilizer N-use efficiency (40.6%) under a relatively lower N application rate. Therefore, Chinese milk vetch–rice cropping system could be a promising approach for decreasing fertilizer inputs to prevent N pollution problems and increasing rice yield, especially for the intensive rice-based cropping systems in southern China.  相似文献   

7.
Nitrogen is the largest input used by farmers, but they often apply excessive quantities of N fertilizer, causing nitrogen losses. In recent years, the management of large quantities of manure and slurry compounds has become a challenge. The aim of this study was to assess the usefulness of the proxy tools Yara N-tester? and RapidScan CS-45 for diagnosing the N nutritional status of wheat crops when farmyard manures were applied. Our second objective was to start designing a N fertilization strategy based on these measurements. To achieve these objectives, two field trials were established with three factors: growing season, three kinds of initial fertilizers [dairy slurry (40 t ha?1), sheep manure (40 t ha?1) and conventional (no organic fertilizer on basal dressing and 40 kg N ha?1 at tillering)] and five N mineral fertilization dose applied at stem elongation. The proxy tools for diagnosing the N nutritional status were used at stem elongation before applying the mineral N. Proxy tool readings as indicators of the nitrogen nutritional status of the field were as good as soil mineral nitrogen (Nmin) or Nitrogen Nutrition Index (NNI). When the readings were approximately 65% (as compared to an overfertilized control), the optimal N rate applied at stem elongation was slightly higher (10–20 kg N ha?1) than the readings at 88%. The first N topdressing at the beginning of tillering could be avoided when manure was applied before sowing, unfolding new possibilities for a later application that might improve the protein content with lower likely fertilization costs.  相似文献   

8.
The effects of green manure, crop sequence and off-farm composts on selected soil quality parameters were assessed in a three-year organic potato (Solanum tuberosum L.) rotation in Eastern Canada. Three crop sequences varying in preceding green manure [red clover (RCl) + RCl, and beans/buckwheat or carrots + oats/peas/vetch mixture (OPV)] as main plots and four fertility treatments applied in the potato phase only [control; inorganic fertilizer; municipal solid waste compost (MSW); composted paper mill biosolid (PMB)] as subplots were compared. In 2008 and 2010, changes in selected soil quality parameters (0–15 cm) were assessed prior to planting of potatoes and at potato tuber initiation stage. Potentially mineralizable nitrogen (N) and the acid phosphatase enzyme activity average values across years were greater following RCl (1.51 abs and 622 kg ha?1) compared with OPV (1.32 abs and 414 kg ha?1) at potato planting. Soil NO3–N average value was greater following RCl compared with OPV (63 vs. 52 kg ha?1) at tuber initiation. For the other measured parameters, OPV and RCl were similar. The soil organic carbon (C) and particulate organic matter-C were greater under PMB and MSW (31.1 and 7.57 kg ha?1) compared with fertilizer treatment (27.9 and 6.05 kg ha?1). The microbial biomass C and microbial biomass quotient were greater under MSW (216 kg ha?1 and 0.73 %) than PMB and fertilizer (147 kg ha?1 and 0.50 %) across crop rotations. Annual legume green manures and off-farm composts can be used to satisfy potato N requirement and maintains soil quality in organic potato rotations.  相似文献   

9.
The efficiency of mint-residue, composted alone and amended with starter nutrients, microbial culture and soil suspension (hereafter termed amended compost) was compared with farm yard manure and inorganic fertilizer on the yield of Japanese mint (Mentha arvensis L.) and improvement of soil fertility. Herbage, essential oil yield, nutrient uptake of Japanese mint and soil available nutrients were significantly enhanced due to application of amended compost as compared to nonamended compost, farm yard manure and inorganic fertilizer. Organic fertilized soils maintained significantly higher available nutrients throughout the crop growth period as compared to inorganic fertilized soils. No additional improvement in yields and soil fertility was recorded with combined application of compost and inorganic fertilizer in 1:1 ratio as against addition of compost alone. Advantage of such combinations was recorded in case of farm yard manure. Results of the study suggested possibilities for nutrient recycling through composted mint-residue for supplementing the fertilizers requirement of Japanese mint.  相似文献   

10.
Farmyard manure (FYM) is valuable for soil management, especially for soils with <?10 g kg?1 organic C in semi-arid West Africa. This study determined short-term FYM effects on yield and on response to N, P and K fertilizer for 20 trials in Niger and 28 trials in Burkina Faso involving six crops. The comparisons were of 0 and 2.5 Mg ha?1 yr?1 FYM applied in Niger, and of 0 and 5 Mg ha?1 FYM applied once in 2 years in Burkina Faso. Fertilizer and FYM application alone had little effect on yield in Niger but there was a synergistic effect of fertilizer P with FYM which included increased mean responses to P of, respectively: 0.22 and 0.43 Mg ha?1 for sorghum grain and fodder (Sorghum bicolor L.); 0.15 and 0.27 Mg ha?1 for cowpea grain and fodder; 0.16 Mg ha?1 grain for pearl millet (Pennisetum glaucum L.) when intercropped with cowpea (Vigna unguiculata L.); and 0.39 Mg ha?1 for groundnut fodder (Arachis hypogea L.). Application of FYM increased pearl millet response to N but decreased legume response to K fertilizer. In Burkina Faso, there was a mean grain yield increase of 0.29 Mg ha?1 yr?1 due to FYM and the effect of applying both FYM and fertilizer was additive except for a synergy of N fertilizer plus manure application for maize (Zea mays L.). Therefore, farmers should apply FYM and fertilizer together in Niger but these can be applied alone or together in Burkina Faso with mostly similar effects.  相似文献   

11.
Application of chemical fertilizers and farmyard manure affects crop productivity and improves nutrient cycling within soil–plant systems, but the magnitude varies with soil-climatic conditions. A long-term (1982–2004) field experiment was conducted to investigate the effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizers and farmyard swine manure (M) on seed and straw yield, protein concentration, and N uptake in the seed and straw of 19-year winter wheat (Triticum aestivum L.) and four-year oilseed (three-year canola, Brassica napus L. in 1987, 2000 and 2003; one-year flax, Linum usitatisimum L. in 1991), accumulation of nitrate-N (NO3-N) in the soil profile (0–210 cm), and N balance sheet on a Huangmian soil (calcaric cambisols, FAO) near Tianshui, Gansu, China. The two main plot treatments were without and with farmyard swine manure (M); sub-plot treatments were control (Ck), N, NP, and NPK.␣The average seed yield decreased in the order MNPK ≥ MNP > MN ≥ NPK ≥ NP > M > N > Ck. The average effect of manure and fertilizers on seed yield was in the order M > N > P > K. The seed yield increase was 20.5% for M, 17.8% for N, 14.2% for P, and 2.9 % for K treatment. Seed yield response to fertilizers was much greater for N and P than for K, and it was much greater for no manure than for manure treatment. The response of straw yield to fertilization treatments was usually similar to that of seed yield. The N fertilizer and manure significantly increased protein concentration and N uptake plant. From the standpoint of increasing crop yield and seed quality, MNPK was the best fertilization strategy. Annual applications of N fertilizer and manure for 23 successive years had a marked effect on NO3-N accumulation in the 0–210 cm soil profile. Accumulation of NO3-N in the deeper soil layers with application of N fertilizer and manure is regarded as a potential danger, because of pollution of the soil environment and of groundwater. Application of N fertilizer in combination with P and/or K fertilizers reduced residual soil NO3-N significantly compared with N fertilizer alone in both no manure and manure plots. The findings suggest that integrated and balanced application of N, P, and K fertilizers and␣manure at proper rates is important for protecting soil and groundwater from potential NO3-N pollution and for maintaining high crop productivity in the rainfed region of Northwestern China.  相似文献   

12.
A number of studies have recommended application of large quantities of manure alone or in combination with inorganic fertilizer in sub-Saharan Africa (SSA). However, yield responses of cereals such as maize are very modest even at manure application rates exceeding 10 t ha?1 year?1. We conducted a meta-analysis of data from 64 studies across 14 countries in SSA in order to explore variability in nutrient concentrations, stoichiometry and maize yield responses to animal manure. We observed novel instances of stoichiometry and correlations between organic carbon (C), total nitrogen (N), phosphorus (P) and potassium (K) concentrations, and elemental ratios in manure. In 27% of the manure samples the C:N ratio was greater than 25 indicating that N will be potentially unavailable to crops due to net immobilization. In over 94% of the manure samples, the N:P and C:P ratios were <15 and <200 indicating net P mineralization. Therefore, decomposition rates and crop responses are likely to be N-limited rather than P-limited in the majority of the manure applied. Our analyses also demonstrate that manure application rates and N and P concentrations are less important than C:N and N:P ratios in determining maize yield response to manure. Therefore, emphasis in the future should not be on increasing manure application rates but on approaches that ensure favourable C:N and N:P ratios. Our findings also suggest the need for feeding animals with high quality diet to get better quality manure, higher crop yields and improve household food security in SSA.  相似文献   

13.
Recent decades have seen an increase in groundwater pollution thought to be a consequence of increasing intensity of land use, primarily through greater use of high N analysis materials as fertilizers. A two-season lysimeter experiment was carried out in a wetland in central Zimbabwe in order to determine the effect of cattle manure quality on (1) NO3–N concentration in leachate and nitrate leaching (2) dry matter accumulation and uptake of N by tomato and rape crops grown in wetland conditions. Two cattle manure quality types based on N content were used in the experiment. The manure collected from a kraal of the smallholder wetland community was classified as high quality manure (high N, 1.36 % N) while that collected from the adjacent commercial farming area was classified as low quality manure (low N, 0.51 % N). The two manure types were applied in rates of 0, 15, 30 Mg ha?1. The treatments were arranged in a randomized complete block design with four replicates. When 15 and 30 Mg high and low N manure ha?1 were applied, the concentration of NO3–N in leachate exceeded the recommended 10 mg L?1 concentration in portable water by 15–104 and 53–174 % respectively. The substitution of 15 and 30 Mg of high N manure with 15 and 30 Mg ha?1 of low N manure reduced total N lost through leaching by 10–43 and 22–69 % respectively. Ground water contamination by nitrate overload can be considerably reduced by application of low N manure to vegetable crops.  相似文献   

14.
Throughout much of Sub-Saharan Africa (SSA), maize production is characterized by low productivity due to the scarce availability and use of external inputs and recurrent droughts exacerbated by climate variability. Within the integrated soil fertility management (ISFM) framework, there is thus a need for optimizing the application of fertilizers and manure to better use the limited nutrient resources and increase crop yield and farmer income. An on-station experiment was conducted in Northern Benin over a 4-year period to evaluate the effect of hill placement of mineral fertilizer and manure on maize yields and soil chemical properties. The treatments consisted in the combination of three rates of manure (0 (NM), 3 (3M) and 6 (6M) Mg ha?1) and three levels of fertilizer (0% (NF), 50% (50F) and 100% (100F) of the rate recommended by extension (76 kg N + 13.1 kg P + 24.9 K ha?1)). On average across the fertilizer rates, hill-placement of manure significantly improved soil organic carbon content, available P and exchangeable K after 4 years by up to 124, 166 and 77%, respectively, compared to the initial values. As a result of the nutrient inputs and improved soil properties, yields increased steadily over time for all manure and fertilizer combinations. Value-cost ratios and benefit–cost ratios were >2 and generally as good or even better for treatments involving 50F compared to NF or 100F. Although applying half the recommended rate of fertilizer without manure as currently done by many farmers appears to make economic sense, this practice is unlikely to be sustainable in the long term. Substituting 50F for 3M or complementing 50F with 3M are two possible strategies that are compatible with the precepts of ISFM and provide returns on investment at least as good as the current practice. However, this will require greater manure production, made possible in part by the increased stover yields, and access to means of transportation to deliver the manure to the fields.  相似文献   

15.
In Qibainong, a steep-mountainous karst region in southwestern China, self-sustaining societies have long existed, but increasing socioeconomic liberation has fuelled the recent rapid structural change of its economy. Consequently, environmental deterioration and exhaustion of resources have become problematic issues. We carried out a field survey in Qibainong in southwestern China and used both estimated and measured N flows and N balances from obtained results. Our results are summarized as follows (1) farmers used large amounts of chemical N fertilizers at intensities of 113–1124 kg N ha−1; (2) substantial application of chemical fertilizer in Qibainong has contributed to an increase in potential NO3-N leaching of 6–511 kg N ha−1, followed by NH3 volatilization; (3) crop products are largely distributed to feed livestock, the products of which are a major income source; (4) this area has a great requirement for imported food; (5) in addition, unused manure N (up to 191 kg N ha−1) is generated by the increase in manure N production. Chemical fertilizer application, in addition to unused manure can be regarded as a major source of environmental damage. Based on the relationship between the N application rate and the NO3-N leaching potential, we estimated the critical limit of the N application rate of chemical fertilizer + manure to be 297 kg N ha−1. In Qibainong, unused manure, which is an important nutrient resource, was applicable within the critical limit. We recommend that all manure N produced within the village be used effectively on arable land, and that any shortages be supplemented by chemical N fertilizer up to 297 kg N ha−1 to maintain water resource quality. Further improvement might be achieved through incorporating chemical fertilizers, P and K supplemented manure, and so on.  相似文献   

16.
The present study estimates the contributions of various organic amendments to soil organic carbon (SOC). The present work discusses data from a 32-year fertilization experiment using vertisol soil. Five treatments with four field replications were included: no fertilizer (CK), mineral fertilizers only (NPK), wheat straw plus NPK (SNPK), swine manure plus NPK (PMNPK), and cattle manure plus NPK (CMNPK). The 13C signature of SOC was measured by δ 13C natural isotope technology, and the carbon functional compositions of organic amendments were determined by solid-state 13C nuclear magnetic resonance spectra. The average proportions of native and crop residues derived organic carbon under the SNPK, PMNPK and CMNPK treatments were 43, 40, 29, and 51, 51, 39%, respectively. The average proportions of organic carbon-derived from wheat straw (SNPK), swine and cattle manure (PMNPK and CMNPK) were 6, 9, and 32%, respectively. The quantitative relationship between carbon retention efficiency and fertilization year could be described by a significantly negative linear function (p < 0.05). The average organic carbon retention efficiencies for wheat straw, swine, and cattle manure differed substantially at 6, 10, and 31%, respectively. Their corresponding aromatic carbon contents were 6, 7, and 12%, respectively. Furthermore, incorporation of organic amendments, especially for cattle manure, led to a decrease in the yield variability and an increase in the sustainable yield index of crops compared with the CK and NPK treatments. In conclusion, the long-term continuous application of cattle manure is a preferred method for enhancing SOC storage and increasing crop production for vertisols.  相似文献   

17.
Proper management of N applied in fertilizers is important to optimize crop production and to avoid negative environmental impacts. The best way to study N dynamics in the soil plant system is to use fertilizers labeled with 15N. Recoveries of nitrogen following fertilization with 15N-labeled goat (Capra hircus L.) manure and gliricidia (Gliricidia sepium Jacq. Walp) biomass were evaluated in a greenhouse experiment with three successive planting cycles of three crops: maize (Zea mays L.), cotton (Gossypium hirsutum L.), and cowpea (Vigna unguiculata (L.) Walp.). Each 1 kg soil pot received 8 g (equivalent to 20 Mg ha?1) of either manure (12.3 mg g?1 of N) or gliricidia (37.8 mg g?1 of N). Plants were harvested 50 days after germination and real (15N) and apparent recoveries of the applied N were determined. Biomass and N amounts in the cotton and maize crops in all three cycles were higher with gliricidia application than with manure, except for cotton in the first cycle. The biomass of cowpea was also higher with gliricídia in the first and second cycles but the amount of N was significantly higher only in the second cycle. In the first cycle, the largest recoveries of 15N were obtained with gliricidia, for all three crops, but in the second and third cycles recoveries were greater with manure, so that the real recoveries of gliricidia and manure were similar (cotton, 35 and 37 %; maize, 27 and 26 %; and cowpea, 41 and 38 % of the applied N, respectively). Estimates of apparent recoveries were different from the real ones and therefore inadequate for cotton and cowpea. The fast release of N from gliricidia prunings and, on the other hand, the strong residual effect of goat manure-N to subsequent cropping cycles should be considered by farmers in their fertilization strategies.  相似文献   

18.
Efficient use of N applied in the form of organic and inorganic fertilizers is important in maize (Zea mays L.) production to maximize producer’s economic returns and maintain soil and water quality. A field study was conducted for three consecutive years (2003–2005) in Thessaloniki, Greece to investigate whether liquid cattle manure can be used to replace inorganic fertilizers and also whether inorganic fertilizer can be applied preplant or as a combination of preplant and sidedress and can affect maize growth, development and N use efficiency. The treatments were control (unfertilized), liquid dairy cattle manure (Manure), application of 260 kg N ha−1 year−1 as basal dressing (N-single), application of 130 kg ha−1 year−1 N as basal dressing before sowing and 130 kg N ha−1 when plants were at the eight-leaf stage (V8) (N-split). In 2 out of the 3 years of the study there was a significant positive effect of fertilizer application on maize growth, development, N uptake, and partitioning compared with the control. Dry matter production was increased by an average of 39% during the 2 years in plots fertilized either with manure or inorganic fertilizers than the control plots. Also from the yield components kernel weight per ear and number of kernels per ear were increased by an average of 35% and 32%, respectively in the fertilized plots compared with the control plots. Chlorophyll level was affected as it was increased by an average of 18%, 14%, and 18% at the ten-leaf stage (V10), silking and milk stage, respectively in the fertilization treatments compared with the control. Similar trend was observed in the other parameters that were studied. No differences were found between the manure and the different times of N application which indicates that manure can be used to replace inorganic fertilizer. Applying N either preplant in a single application or in split application (half of N preplant and half as sidedress) did not have any effect on any characteristics that were studied indicating that preplant application can be used as it is more cost effective. The present study indicates that liquid cattle manure can be used to replace inorganic fertilizers and also that there was no difference between preplant and sidedress application of N.  相似文献   

19.
In agro-ecosystems, the relationship between soil fertility and crop yield is mediated by manure application. In this study, an 8-year field experiment was performed with four fertilizer treatments (NPK, NPKM1, NPKM2, and NPKM3), where NPK refers to chemical fertilizer and M1, M2, and M3 refer to manure application rates of 15, 30, and 45 Mg ha?1 year?1, respectively. The results showed that the NPKM (NPKM1, NPKM2, and NPKM3) treatments produced greater and more stable yields (4.95–5.45 Mg ha?1 and 0.59–0.75) than the NPK treatment (4.01 Mg ha?1 and 0.50). Crop yields under the NPKM treatments showed two trends, with a rate of decrease of 0.48–0.83 Mg ha?1 year?1 during the first 4 years and a rate of increase of 0.10–0.25 Mg ha?1 year?1 during the last 4 years. The soil organic carbon (SOC) significantly increased under all treatments. The estimated annual SOC decomposition rate was 0.35 Mg ha?1 year?1 and the equilibrium SOC level was 6.22 Mg ha?1. Soil total nitrogen (N), available N, total phosphorus (P) and available P under the NPKM treatments increased by 0.15–0.26, 15–33, 0.17–0.66 and 45–159 g kg?1, respectively, compared with the NPK treatment. Manure application mainly influenced crop yield by affecting the soil TN, available N, and available P, which accounted for up to 64% of the crop yield variation. Taken together, applying manure can determine or at least improve the effects of soil fertility on crop yield in acidic soils in South China.  相似文献   

20.
In dry areas, unconventional feeds are increasingly used for mitigating feed shortages and rangeland degradation. We evaluated how feeding sheep diets containing olive leaves, saltbush leaves and olive cake affects manure quality compared to a barley straw based diet. Soil incubation and plant growth experiments were carried out to measure soil nitrogen (N) mineralization and N uptake by barley plants and to calculate N flow through the feed-animal-soil–plant system. Fresh feces, composts consisting of feces, urine and straw, and ammonium sulfate fertilizer were mixed with soil at rate of 90 mg N kg?1 soil dry matter. Comparisons were made with non-amended soils (control) and soils amended with fresh olive cake applied at 90 and 22.5 mg N kg?1 soil dry matter, respectively. The latter treatment enabled investigation of the effect of passage of olive cake through the digestive tract of sheep on N availability and phenol transformation. Applying fresh olive cake and feces, except the saltbush leaf derived feces, resulted in a net N immobilization. All composts resulted in net N mineralization, although not significantly different from the 0N control soil. Barley growing in soils with amendment that caused N immobilization took up less N than barley growing on the 0N treatment. Reduction in N uptake was most pronounced after amendment with fresh-olive cake. Treatments with net mineralization increased barley N uptake over the 0N treatment with 2–16 % of N applied being taken up. Dietary composition had a minor effect on N fertilizer value of either feces or compost, but feces N alone was not an efficient N source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号