首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) is the most limiting nutrient in crop production. Legumes such as red clover can provide N through biofixation, but securing nitrogen in soil for subsequent crop production must also be considered. Variety selection and management in red clover cropping can influence soil mineral nitrogen (SMN) availability. A field trial to investigate this was conducted with six varieties, under one and two cut management, over 2 years. Dry matter (DM) and N yield, Sclerotinia resistance and SMN availability were assessed. Low DM and N yields (1.6–2.4 t DM ha?1 and 54–83 kg N ha?1) in the first year of cultivation allowed ~?40 kg N ha?1 to become available, but high DM and N yields (10.2–14.6 t DM ha?1 and 405–544 kg N ha?1) allowed ~?20 kg N ha?1 to become available. Wetter weather in 2015 caused significantly more SMN losses than 2016 (20 kg N ha?1 in 2015 and 5 kg N ha?1 in 2016). The varieties Amos, Maro and Milvus lost significantly more SMN in the winter period, which may have been caused by more severe infection of Sclerotinia (these varieties were 50–80% more severely infected other varieties). Varietal effect was non-significant for winter losses in 2016, where no significant varietal differences in Sclerotinia infection were observed. 1 cut made ~?41 kg N ha?1 available in the growing season of 2015, whilst 2 cut made significantly less (37 kg N ha?1). Cutting was non-significant in 2016 but 1 cut was less susceptible to losses in the winter period. Cutting in 2015 did not significantly affect herbage DM and N yields in the first or second cut of 2016.  相似文献   

2.
The aim of this study, which was conducted in a humid savannah zone of central Côte d’Ivoire, was to examine changes in the quality of soil cultivated with herbaceous legume cover crops as a function of initial soil characteristics. Mucuna pruriens var utilis and Pueraria phaseoloides were used in a two side-by-side location experiment: a shrubby savannah (the savannah site or “SAV”) and a natural fallow dominated by Chromolaena odorata (the fallow site or “FAL”). The latter was mainly characterized by higher organic matter [organic carbon (C) 10 vs. 7.5 mg kg?1; total nitrogen (N) 0.8 vs. 0.5 mg kg?1) and total phosphorus (P) (282.3 vs. 168.3 mg kg?1) contents in the upper soil layer (0–10 cm). After 8 months of growth, biomass production by M. pruriens was found to be 6.5 and 4.9 t dry matter (DM) ha?1 at FAL and SAV, respectively. For P. phaseoloides, the values were 7.2 and 6.4 t DM ha?1, respectively, in approximately the same period. The quantities of nutrients released by decomposing legume litter were higher at FAL than at SAV. Between-site differences in soil quality improvement were most noticeable in terms of available P, microbial biomass carbon (MBC) and MBC:total carbon (TC) ratio. The FAL site experienced a faster improvement of soil parameters under both legume species: available P increased from 18 to 58 mg kg?1 under M. pruriens, and from 19 to 52 mg kg?1 under P. phaseoloides; MBC increased from 88 to 185 mg kg?1 under M. pruriens, and from 127 to 192 mg kg?1 under P. phaseoloides. In contrast, the parameters remained constant over time at SAV. Soil C and N contents as well as C mineralization showed similar trends at both sites. Based on these results, we conclude that soil quality improvement under cover crops appears to be faster when the initial soil organic C, total N and P contents are adequate. These findings will be useful in assisting governmental decision-making on approaches to be taken for restoring soil fertility in low-input agricultural systems in West Africa.  相似文献   

3.
Biogeochemical processes regulating cropland soil nitrous oxide (N2O) emissions are complex, and the controlling factors need to be better understood, especially for seasonal variation after fertilization. Seasonal patterns of N2O emissions and abundances of archaeal ammonia monooxygenase (amoA), bacterial amoA, nitrate reductase (narG), nitrite reductase (nirS/nirK), and nitrous oxide reductase (nosZ) genes in long-term fertilized wheat–maize soils have been studied to understand the roles of microbes in N2O emissions. The results showed that fertilization greatly stimulated N2O emission with higher values in pig manure-treated soil (OM, 2.88 kg N ha?1 year?1) than in straw-returned (CRNPK, 0.79 kg N ha?1 year?1) and mineral fertilizer-treated (NPK, 0.90 kg N ha?1 year?1) soils. Most (52.2–88.9%) cumulative N2O emissions occurred within 3 weeks after fertilization. Meanwhile, N2O emissions within 3 weeks after fertilization showed a positive correlation with narG gene copy number and a negative correlation with soil NO3? contents. The abundances of narG and nosZ genes had larger direct effects (1.06) than ammonium oxidizers (0.42) on N2O emissions according to partial least squares path modeling. Stepwise multiple regression also showed that log narG was a predictor variable for N2O emissions. This study suggested that denitrification was the major process responsible for N2O emissions within 3 weeks after fertilization. During the remaining period of crop growth, insufficient N substrate and low temperature became the primary limiting factors for N2O emission according to the results of the regression models.  相似文献   

4.
Modeling changes in plant-available soil P in relation to P budgets should integrate the isotopic kinetic approach, which describes the dynamics of P ion transfer at the solid-to-solution interface. We tested a process-based mass-balance model that uses the quantity of P ions in solution, the diffusive P ions (Pr) in the solid phase, and the annual P budget to describe the soil P availability of a timothy (Phleum pratense L.) grassland that received additions of annual P and N fertilizer. An experiment was established on a gravely-sandy loam soil in 1998, with combinations of P (0, 15, 30, and 45 kg ha?1) and N (0, 60, 120, and 180 kg ha?1) applied annually from 1999 to 2006. An isotopic dilution analysis was performed on soils sampled in 2006 to calibrate the Freundlich kinetic equation which describes the dynamics of Pr transfer at the solid-to-solution interface as a function of time (t) and concentration of P ions in solution (Cp). Model simulations were performed over 9 years (1999–2007). Measurements of Cp from soils sampled between 2001 and 2007 were compared with simulated values to evaluate model performance. The amount of Pr was estimated for two transfer periods, of 2 and 3 months, to evaluate the extent and contribution of slow P ion reactions. The Freundlich kinetic equation was defined as: Pr = 7.78 × Cp0.41 × t 0.36 (with Pr < PrLIMIT, 192 observations, Adj. R 2 = 1.0, P < 0.001). Simulated Pr values were 74 and 84% of total inorganic soil P for the transfer periods of 2 and 3 months, respectively. For the two transfer periods, and for each combination of N and P additions, simulations accurately reflected the long-term effects of P and N fertilization on the trends of measured Cp with root mean square deviation (RMSD) between measured and simulated values of less than 0.17. Across P applications, the simulations were slightly improved with a 2-month transfer period for limiting N conditions (0 and 60 kg N ha?1; Y = 0.95X + 0.06, R2 = 0.76, RMSD = 0.08) and a 3-month transfer period for non-limiting conditions (120 and 180 kg N ha?1; Y = 0.86X + 0.04, R2 = 0.78, RMSD = 0.06). This approach needs to be tested in various soil types and diverse cropping systems because the estimation of Pr value can be quite sensitive to the extent of rapid and slow reactions, hence the transfer periods. For this gravely-sandy loam soil, the proposed approach accurately describes the functioning of P cycling and confirms the agronomic importance of solution and solid phase P ions in managed grasslands.  相似文献   

5.
The development of new environment-friendly and efficient adsorbents has attracted a great interest in recent years. In this study, ethylene diamine-grafted chitosan copolymer (CS–MAA–EN) and triethylene tetramine-grafted chitosan copolymer (CS–MAA–TN) were synthesized to remove heavy metal ions from water. The influence of pH, adsorbents dosage and initial metal concentration were investigated to study the adsorbing effect of CS–MAA–EN and CS–MAA–TN for the removal of Cu2+ from aqueous solutions. The equilibrium adsorption capacities of CS–MAA–EN and CS–MAA–TN were 85.91 and 102.67 mg/g, respectively. The adsorption process was fitted better by the Langmuir isotherm model (R 2 = 0.9993, 0.9991) than the Freundlich isotherm model (R 2 = 0.8781, 0.8775). The adsorption kinetics confirmed that the adsorption mechanism could be better described by the pseudo-second-order equation. Two adsorbents showed excellent desorption efficiency (D e) and reuse ratio (R u). D e and R u of CS–MAA–EN were evaluated as 95.2 and 89.35 %, respectively, and those values of CS–MAA–TN were 92.73 and 83.25 %. The competitive adsorption results of the two adsorbents indicated that the rate sequence was Fe3+ > Cu2+ > Cr6+ > Ni2+ > Zn2+.  相似文献   

6.
In this work, a novel chitosan/P(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylic amide) (CS/P(AMPS-co-AM)) hydrogel was successfully prepared by a simple one-step method using glow-discharge-electrolysis plasma (GDEP) initiated copolymerization, in which N,N′-methylenebisacrylamide was used as a cross-linking agent. A copolymerization mechanism of AMPS and AM onto CS initiated by GDEP was proposed. The structure, thermal stability and morphology of CS/P(AMPS-co-AM) hydrogel were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), TG/DTG, and scanning electron microscope (SEM). This hydrogel was employed as an absorbent for the removal of methylene blue (MB) and malachite green (MG) from aqueous solutions. The effects of pH, contact time and equilibrium concentration on the dye adsorption were investigated batchwise. FTIR and XRD indicated that AM and AMPS were grafted onto the CS backbone successfully, forming copolymer. TG/DTG suggested that grafted AMPS and AM onto CS could change the thermal stability of the CS. SEM showed a unique three-dimensional porous structure for the CS/P(AMPS-co-AM) hydrogel. The optimum pH for the removal of cationic dyes was 5.8, and time of adsorption equilibrium was achieved in 90 min. The CS/P(AMPS-co-AM) hydrogel exhibited a very high adsorption potential, and its adsorption capacities calculated based on the Langmuir isotherm for MB and MG were 1,538.5 and 917.4 mg g?1, respectively. The dye adsorption data fitted well to the pseudo-second-order model and Langmuir model at 25 °C with pH 5.8.  相似文献   

7.
Accounting of N inputs and outputs and N retention in the soil provides N balance that measures agroecosystem performance and environmental sustainability. Because of the complexity of measurements of some N inputs and outputs, studies on N balance in long-term experiments are scanty. We examined the effect of 8 years of tillage, crop rotation, and cultural practice on N balance based on N inputs and outputs and soil N sequestration rate under dryland cropping systems in the northern Great Plains, USA. Tillage systems were no-tillage (NT) and conventional tillage (CT) and crop rotations were continuous spring wheat (Triticum aestivum L.) (CW), spring wheat–pea (Pisum sativum L.) (W–P), spring wheat–barley (Hordeum vulgaris L.) hay–pea (W–B–P), and spring wheat–barley hay–corn (Zea mays L.)–pea (W–B–C–P). Cultural practices were traditional (conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height) and improved (variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height). Total N input due to N fertilization, pea N fixation, atmospheric N deposition, crop seed N, and nonsymbiotic N fixation was greater with W–B–C–P than CW, regardless of tillage and cultural practices. Total N output due to aboveground biomass N removal and N losses due to denitrification, volatilization, plant senescence, N leaching, gaseous N (NOx) emissions, and surface runoff were not different among treatments. Nitrogen sequestration rate at 0–20 cm from 2004 to 2011 varied from 29 kg N ha?1 year?1 in CT with W–P to 89 kg N ha?1 year?1 in NT with W–P. Nitrogen balance varied from ? 39 kg N ha?1 year?1 in NT with CW and the improved practice to 41 kg N ha?1 year?1 in CT with W–P and the traditional practice. Because of legume N fixation and increased soil N sequestration rate, diversified crop rotations reduced external N inputs and increased aboveground biomass N removal, N flow, and N balance compared with monocropping, especially in the CT system. As a result, diversified legume–nonlegume crop rotation not only reduced the cost of N fertilization by reducing N fertilization rate, but also can be productive by increasing N uptake and N surplus and environmentally sustainable by reducing N losses compared with nonlegume monocropping, regardless of cultural practices in dryland agroecosystems.  相似文献   

8.
The strength of the associations of cotton (Gossypium hirsutum L.) yield and N nutrition with integrated Normalized Difference Vegetation Index (NDVI) and plant height measurements has been scarcely documented. The objective of this investigation was to compare the strength in terms of determination coefficient (R2) among the associations of cotton yield and leaf N concentration with integrated and respective NDVI and plant height measurements taken at key growth stages. A field experiment was carried out on no-till cotton at Jackson and Milan in Tennessee during 2008–2010. Six N treatments of 0, 45, 90, 135, 179, and 224 kg N ha?1 were implemented in a randomized complete block design with four replicates for all site years. Regressions of lint yield with NDVI × plant height and NDVI + plant height were sometimes stronger than those of lint yield with NDVI alone. Associations of leaf N concentration with NDVI × plant height and NDVI + plant height were similar to or variably stronger than those of leaf N with NDVI alone. Regressions of lint yield and leaf N with NDVI × plant height or NDVI + plant height were generally similar to those of lint yield and leaf N with plant height alone. Utilization of integrated NDVI and plant height measurements to predict cotton yield and/or assess N nutrition has variable advantages over the use of NDVI alone. Both integrated and respective NDVI and plant height measurements are more appropriate to be used to predict cotton yield than to assess N nutrition.  相似文献   

9.
In northwestern Germany slurry injection below maize (Zea mays L.) seeds is gaining increasing interest of farmers, because of the expected enhanced nitrogen (N) and phosphorus (P) use efficiencies compared to the usual fertilizing practice. The present study aims to compare the spatial and temporal soil mineral nitrogen (SMN) dynamics for these fertilizing strategies. Field trials with four treatments (unfertilized control, broadcast application + N P mineral starter fertilizer (+MSF), injection and injection + nitrification inhibitor (NI)) were conducted using pig slurry on sandy soil in 2014 and 2015. Soil samples were taken from three soil layers at 30 cm intervals down to 90 cm, and at three positions (below the maize row, 15 and 30 cm distance to the row) at several dates over the growing season. Soil monoliths (15 × 15 × 10 cm) were sampled around the injection zone, and for all other soil zones an auger was used. In 2014 due to heavy rainfall all fertilized N was displaced from the top soil layer of the broadcast treatment until 6-leaf stage, while N displacement was significantly smaller after slurry injection (about 20 kg SMN ha?1 more in top layer). The lateral movement of injected slurry N was negligible. In 2015 almost no displacement of fertilized N out of the top soil layer occurred independently of treatments, because of lower rainfall. The release of slurry N was delayed following broadcast application and large SMN concentrations were detected in the injection zones until 10-leaf stage. The addition of a NI resulted in significantly increased ammonium N concentrations in the injection zone throughout the early growth stages [+46 % (2014) and +12 % (2015) at 6-leaf stage]. Thus, N displacement was delayed in 2014 and in 2015 at 6-leaf stage increased SMN concentrations (+1/3 with NI) were found around the slurry band. Due to slurry injection, especially when combined with a nitrification inhibitor, the applied nitrogen is located in a soil zone with better spatial availability for plant roots compared to broadcast application and the risk of nitrate leaching is significantly reduced.  相似文献   

10.
Farmyard manure (FYM) is valuable for soil management, especially for soils with <?10 g kg?1 organic C in semi-arid West Africa. This study determined short-term FYM effects on yield and on response to N, P and K fertilizer for 20 trials in Niger and 28 trials in Burkina Faso involving six crops. The comparisons were of 0 and 2.5 Mg ha?1 yr?1 FYM applied in Niger, and of 0 and 5 Mg ha?1 FYM applied once in 2 years in Burkina Faso. Fertilizer and FYM application alone had little effect on yield in Niger but there was a synergistic effect of fertilizer P with FYM which included increased mean responses to P of, respectively: 0.22 and 0.43 Mg ha?1 for sorghum grain and fodder (Sorghum bicolor L.); 0.15 and 0.27 Mg ha?1 for cowpea grain and fodder; 0.16 Mg ha?1 grain for pearl millet (Pennisetum glaucum L.) when intercropped with cowpea (Vigna unguiculata L.); and 0.39 Mg ha?1 for groundnut fodder (Arachis hypogea L.). Application of FYM increased pearl millet response to N but decreased legume response to K fertilizer. In Burkina Faso, there was a mean grain yield increase of 0.29 Mg ha?1 yr?1 due to FYM and the effect of applying both FYM and fertilizer was additive except for a synergy of N fertilizer plus manure application for maize (Zea mays L.). Therefore, farmers should apply FYM and fertilizer together in Niger but these can be applied alone or together in Burkina Faso with mostly similar effects.  相似文献   

11.
A highly sensitive square-wave adsorptive anodic stripping voltammetric method was described for the determination of diflunisal in its formulations and human blood, utilizing a developed montmorillonite-Ca-modified carbon paste electrode (CPE). The peak current was significantly enhanced due to the strong adsorptive properties of montmorillonite-Ca clay. The optimal procedural parameters were frequency f = 80 Hz, scan increment ΔE a = 10 mV, pulse-amplitude ΔE i = 25 mV, and an accumulation potential E acc of 0.0 V versus Ag/AgCl/3M KCl in acetate buffer of pH 5.0 using 10% (w/w) MMT-Ca-modified CPE. The described method was successfully applied for assay of diflunisal in different pharmaceutical formulations (Doloban®, Dolozal®, and Maxipan® tablets) with mean percentage recoveries of 98.72 ± 0.35, 99.24 ± 0.89, and 98.20 ± 1.38, respectively. Furthermore, the method was successfully applied for assay of diflunisal in spiked human serum without the necessity of sample pretreatment or time-consuming extraction prior to the analysis. Mean percentage recovery of diflunisal in human serum was 99.16 ± 1.03 with a limit of detection of 3.0 × 10?9 M (0.75 ng mL?1). Due to this extremely low limit of detection, the proposed method was used to follow up the concentration of drug in blood samples of two male volunteers after oral administration of a single dose of Dolozal®, 500 mg tablet.  相似文献   

12.
An open-labeled randomized trial with parallel groups was carried out to study the effects of Dif1stat® (Monascus purpureus–Linear aliphatic alcohols–Niacin) in the treatment of primary moderate hypercholesterolemia. The trial lasted 8 months. The patients, males and females, were assigned to two groups: A (#130), treated with diet, and B (#110) submitted to diet + Dif1stat®. After 4 months, group A did not show significant changes in Total cholesterol (TC), LDL-cholesterol (LDLC), HDL-cholesterol (HDLC) or non-HDL-cholesterol (non-HDLC). The same group, showed a reduction in TC (–22%), LDLC (–30%) and non-HDLC (–27%) after 8 months (P ≤ 0.001). After 4 months, TC (–21.3%), LDLC (–29%), and non-HDLC (–26%) were significantly lowered in group B (P ≤ 0.001). In group B, TC, LDLC and non-HDLC showed a further reduction after 8 months: –29.4, –38 and –37%, respectively (P ≤ 0.001). Even triglycerides (TG) decreased significantly (–33%) (P ≤ 0.001). After 8 months, group B showed a significant reduction of TG (–33%) (P ≤ 0.001), when compared to group A. Some safety parameters were significantly reduced in both groups: AST and γ-GT in group A after 4 and 8 months, as well as ALT, AST and γ-GT in group B after 8 months (P ≤ 0.001). Dif1stat®, given with a suitable diet, was well tolerated in the long-term and induced an anti-atherogenic plasma lipid and lipoprotein profile, in patients with moderate hypercholesterolemia.  相似文献   

13.
Reusability and selective adsorption toward Pb2+ with the coexistence of Cd2+, Co2+, Cu2+ and Ni2+ ions on chitosan/P(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylic acid) [CS/P(AMPS-co-AA)] hydrogel, a multi-functionalized adsorbent containing –NH2, –OH, –COOH and –SO3H groups was studied. The CS/P(AMPS-co-AA) was prepared in aqueous solution by a simple one-step procedure using glow discharge electrolysis plasma technique. The reusability of adsorbent in HNO3, EDTA-2Na and EDTA-4Na was investigated in detail. The competitive adsorption of the metal ions at the initial stage was compared between their equal mass concentration and equal molar concentration. In addition, the adsorption mechanism of the adsorbent for adsorption of Pb2+ was also analyzed by XPS. The results showed that the optimum pH of adsorption was 4.8, and time of adsorption equilibrium was about 180 min. Adsorption kinetics fitted well in the pseudo second-order model. The equilibrium adsorption capacities of Pb2+, Cd2+, Co2+, Cu2+, and Ni2+ at pH 4.8 were obtained as 673.3, 358.3, 176.7, 235.0 and 171.7 mg g?1, in their given order. The adsorbent displayed an excellent reusability using 0.015 mol L?1 EDTA-4Na solution as the eluent, and the desorption ratio could not correctly reflect the true characteristics of adsorption/desorption process. Moreover, the adsorbent showed good adsorption selectivity for Pb2+. The molar adsorption capacity at the initial stage with equal molar concentration was more reliable than the mass adsorption capacity during the study of selective adsorption. According to the XPS results, the adsorption of Pb2+ ions by the CS/P(AMPS-co-AA) absorbent could be attributed to the coordination between N atom and Pb2+ and ion-exchange between Na+ and Pb2+.  相似文献   

14.
Tea fields represent an important source of nitrous oxide (N2O) and nitric oxide (NO) emissions due to high nitrogen (N) fertilizer applications and very low soil pH. To investigate the temporal characteristics of N2O and NO emissions, daily emissions were measured over 2½ years period using static closed-chamber/gas chromatograph and chemiluminescent measurement system in a tea field of subtropical central China. Our results revealed that N2O and NO fluxes showed similar temporal trends, which were generally driven by temporal variations in soil temperature and soil moisture content and were also affected by fertilization events. The measured average annual N2O and NO emissions were 10.9 and 3.3 kg N ha?1 year?1, respectively, highlighting the high N2O and NO emissions from tea fields. To improve our understanding of N-cycling processes in tea ecosystems, we developed a new nitrogenous gas emission module for the water and nitrogen management model (WNMM, V2) that simulated daily N2O and NO fluxes, in which the NO was simulated as being emitted from both nitrification and nitrite chemical decomposition. The results demonstrated that the WNMM captured the general temporal dynamics of N2O (NSE = 0.40; R2 = 0.52, RMSE = 0.03 kg N ha?1 day?1, P < 0.001) and NO (NSE = 0.41; R2 = 0.44, RMSE = 0.01 kg N ha?1 day?1, P < 0.001) emissions. According to the simulation, denitrification was identified as the dominant process contributing 76.5% of the total N2O emissions, while nitrification and nitrite chemical decomposition accounted for 52.3 and 47.7% of the total NO emissions, respectively.  相似文献   

15.
Copolymers of N-acryloyl-N′-methylpiperazine (AcrNMP) and 2-hydroxyethyl methacrylate (HEMA) were synthesized by free radical solution polymerization in dioxane at 70 ± 1 °C, using 2,2′-azobisisobutyronitrile (AIBN) as initiator. The copolymer compositions were analyzed by the methods of FTIR spectroscopy and elemental analysis. Both the method of analysis yielded results that agreed reasonably well. The monomer reactivity ratios of the copolymerization were determined by the linearization methods of Finemann–Ross (FR) and Kelen–Tüdös (KT). The reactivity parameter results derived using FTIR analysis showed that the copolymerization yielded mainly alternating structure with reactivity ratios, r 1(AcrNMP) = 0.263 ± 0.011 and r 2(HEMA) = 0.615 ± 0.097 by F–R method and r 1 = 0.227 ± 0.074 and r 2 = 0.53 ± 0.15 by KT method. Microstructure data calculated by the method of Igarashi also supports the alternating structure (tendency) of the copolymer. Crosslinked polymer gels of this system exhibited remarkably high swelling of more than 500% in water at ambient temperature.  相似文献   

16.
Agricultural management systems are needed to simultaneously enhance production, promote plant diversity, improve nutrient cycling and reduce soil compaction. We investigated the effects of intercropped forage grass on production of corn (Zea mays L.) harvested for silage at 0.20 and 0.45 m height in the summer, as well as on production of subsequent forage, soybean [Glycine max (L.) Merr.] harvested for silage, nutrient cycling and soil responses on a Typic Haplorthox in Botucatu, São Paulo State, Brazil. Palisade grass cv. BRS Piatã [Urochloa brizantha cv. BRS Piatã] was the introduced companion crop with corn (Years 1 and 2), while signal grass [Urochloa decumbens cv. Basilisk] was the residual weedy species in comparison. Guineagrass cv. Aruãna [Megathyrsus maximus cv. Aruãna] was the introduced companion crop with soybean (Year 3), with only a residual effect of crop systems from the previous two years. After the corn silage harvest, pasture was grazed by lambs in winter/spring using a semi-feedlot system. When cut at 0.45 m compared with 0.20 m height, corn intercropped with palisade grass had greater leaf nutrient concentration, improved agronomic characteristics, forage mass of pasture for grazing by lambs, greater surface mulch produced, and greater quantity of N, P and K returned to soil. Greater soil organic matter, P, K and Mg concentration, and base saturation in the surface soil depth and lower soil penetration resistance at all depths occurred at 0.45 m than at 0.20 m corn silage cutting height intercropped with palisade grass. Analyzing the system as a whole, harvesting corn silage crop with palisade grass intercrop at 0.45 m height was the most viable option in this integrated crop-livestock system.  相似文献   

17.
Blends [60:40, 70:30, and 80:20 (w/w)] of coconut oil (CO) and high oleic sunflower oil (HOSO) were interesterified using immobilized enzyme, Lipozyme® TL IM (Novozymes North America Inc., Franklinton, NC, USA). The structured lipids (SLs), referred to as interesterified products (IPs) IP60:40, IP70:30, and IP80:20, were compared to CO and HOSO for application in edible films. IPs were compared based on fatty acid profile, TAG molecular species, melting profile, moisture vapor permeability, mechanical properties, film transparency, density, and thickness. Interesterification increased oleic acid content at the sn-2 position of IPs. CO had 5.50 ± 1.67 mol% oleic acid at the sn-2 position, and when interesterified with HOSO (92.81 ± 1.10 mol% oleic acid) the amount of oleic acid significantly increased (p < 0.05) at the sn-2 position for IP60:40, IP70:30, and IP80:20 (33.86 ± 1.55, 27.34 ± 1.20, 20.61 ± 1.50 mol%), respectively. There was no significant difference between SLs, HOSO, and CO for water vapor permeability and density when applied to emulsion edible films. The HOSO film was significantly different (1.43 ± 0.27 AUmm?1) from the rest of the SLs and CO for film transparency. IP60:40 (2.20 ± 0.22 AUmm?1) decreased the opacity and was significantly different from HOSO and IP80:20 (2.88 ± 0.08 AUmm?1). Tensile strength of IP60:40 was 0.39 ± 0.17 MPa which was significantly different from IP70:30, IP80:20, and HOSO. The elongation at break was significantly different for HOSO and IP60:40. IP60:40 could be used to further investigate the use of SL in edible film for sports nutrition products.  相似文献   

18.
Dianhydrogossypol (4,4′-dihydroxy-5,5′-diisopropyl-7,7′-dimethyl-bis(3H-naphtho[1,8-bc]furan-3-one)) was made by refluxing gossypol in m-xylene. Proton NMR spectroscopy was used to confirm that complete conversion was achieved over a time period of several hours. Single crystals of the compound were obtained by slow evaporation from dichloromethane. Diffraction studies indicate that this crystal form is tetragonal with a I41/a space group and with cell dimensions of a = b = 33.8265(4) Å, c = 9.1497(2) Å, V = 10469.4(3) Å3 at 100 K. The structure was solved by direct methods and was refined to an R1 value of 0.0415 on 6,408 independent reflections. Dianhydrogossypol exists as a pair of enantiomers within this structure. The two fused planar ring systems are oriented at a 117° angle to each other (i.e., close to perpendicular), and the isopropyl groups are oriented with the ternary carbon hydrogen atoms pointed inward toward the center of the molecule. Repeating groups of four molecules (of the same chirality) pack to form a helical structure that is supported by intermolecular hydrogen bonds. Each helix is surrounded by four neighboring helices that are composed of molecules of the opposite chirality. The helices form the walls of empty channels that are 5–6 Å wide. As has been found for some gossypol crystal forms, the open-channel structure of dianhydrogossypol might be useful for scavenging or carrying small molecules. Additional NMR studies confirm that dianhydrogossypol can be converted directly to gossypol lactol ethers in the presence of anhydrous alcohols.  相似文献   

19.
Isonicotinate self-assembled monolayers (SAM) were prepared on alumina surfaces (A) using isonicotinic acid (iNA). These functionalized layers (iNA-A) were used for the seeded growth of copper films (Cu-iNA-A) by hydrazine hydrate-initiated electroless deposition. The films were characterized by scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and advancing contact angle measurements. The films are Cu0 but with surface oxidation, and show a faceted morphology, which is more textured (R q = 460 ± 90 nm) compared to the SAM (R q = 2.8 ± 0.5 nm). In contrast, growth of copper films by SnCl2/PdCl2 catalyzed electroless deposition, using formaldehyde (CH2O) as the reducing agent, shows a nodular morphology on top of a relatively smooth surface. No copper films are observed in the absence of the isonicotinate SAM. The binding of Cu2+ to the iNA is proposed to facilitate reduction to Cu0 and create the seed for subsequent growth. The films show good adhesion to the functionalized surface.  相似文献   

20.
Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission data from agroforestry systems are not available in the southeastern USA, thus limiting our ability to optimize agroforestry management strategies for the region. We hypothesized that tree-crop interactions could prevent excess N from being released to the atmosphere as nitrous oxide (N2O). We determined N2O and carbon dioxide (CO2) emissions, soil temperature, water content, and surface-soil inorganic N in an 8-year-old agroforestry site at the Center for Environmental Farming Systems in Goldsboro, North Carolina, USA. The experimental design was a factorial arrangement of soil texture (loamy sand, sandy loam, and clay loam) and canopy cover (cropped alley, margin between crops and trees, and under Pinus palustris, Pinus taeda, and Quercus pagoda) with three replications. Sampling occurred 42 times within a year using static, vented chambers exposed to the soil for 1-h periods. Soil N2O emission was lower under tree canopies than in cropped alleys, and margin areas were intermediate. Soil texture, water content, and inorganic N were key determinants of the magnitude of N2O emission. Soil CO2 emission was controlled by temperature and water content as expected, but surprisingly not by their interaction. Soil temperature was 1.8 ± 1.3 °C lower and soil water content was 0.043 ± 0.15 m3 m?3 lower under tree canopy than in cropped alleys, which helped to reduce CO2 emission under trees relative to that in cropped alleys. Our results provide a foundation for reducing greenhouse gas emissions in complex agricultural landscapes with varying soil texture by introducing timber production without abandoning agricultural operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号