首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field surplus nitrogen (N) and farm disposal N are major sources of water pollution in farming systems. These sources are estimated from N budgets in field and whole farms, which are associated with the production and consumption of food. This study was conducted to evaluate these two pollution sources in the steep mountainous karst region of Quibainong, Guangxi Province, southern China. The region is, characterized as an area of upland farms, due to the shallow soils and rapid water drainage through cracks in the limestone. Although field surplus N in 1960 was only 4.1 kg N ha–1, current field surplus N ranged from 10.1 to 463 kg N ha–1, with values above 50 kg N ha–1 in farms along roads and less than 40 kg N ha–1 in the farms away from roads. The results obtained in near-road farms were similar to those in a previous study of N budgets in China. There was a significant positive correlation between the field surplus N and N application rate, including when the previous data were incorporated. The proportion of manure to total N application decreased with increase of N application. Chemical fertilizer was applied in greater quantity in economically rich farms. Therefore, the increase of field surplus N in Quibainong may be caused by economic improvement. Although livestock and human excreta were stocked in manure barns, unused excreta N increased with the increase of N excreted. The unused excreta N also increased with the decrease of feed self-sufficiency, but was not related to N application rate. These facts indicate that livestock husbandry in Quibainong is related to economic status of farms, but independently of crop production.The N application rate of more than 160 kg N ha–1 increased field surplus N to an extent greater than crop uptake N, and a N application rate of more than 185 kg N ha–1 increased the potential nitrate-N concentration to more than 10 mg L–1. Therefore, 160–185 kg N ha–1 is suggested to be the environmental capacity to sustain optimal N cycling in Quibainong. The average value of excreta N produced on near-road farms in Quibainong was 171 kg N ha–1. If excreta N was used evenly for crop cultivation without chemical fertilizer in whole fields, the optimal N cycling would be maintained.The survey conducted here using a questionnaire was effective in evaluating all kind of N flows in the farming systems.  相似文献   

2.
The objective of this study was to quantify nitrogen (N), phosphorus (P), and potassium (K) use and cycling in a dairy farming system. The data were collected from the experimental farm at the National Institute of Livestock and Grassland Science in Tochigi Prefecture, Japan, using about 11 ha of forage crop fields and about 30 dairy cows. Forage crops grown in the field were ensiled and offered to the cows, and the subsequent compost from the animals’ excretion was applied to the field. The dairy farming system consisted of soil/crop, feed storage, animal, and compost components. Nutrient inputs and outputs and flows of the soil–plant–animal pathway for the whole farm and each component were measured for 5 years. Nutrient utilization was evaluated using nutrient balances, use efficiencies, and cycling indices. The 5 year average nutrient balances and nutrient use efficiencies of N, P, and K for the whole farm (kg ha?1 year?1) were 378, 97, and 199 and 0.25, 0.19, and 0.18, respectively. The characteristics of nutrient balances and use efficiencies for each component differed among N, P, and K. The average cycling indices of N, P, and K were 0.12, 0.11, and 0.37, respectively. Significant positive relationships between use efficiencies and cycling indices were observed in N and K. Year-to-year variations in flows were relatively large for compost application. The results suggested that improving N balance would be the most effective option for solving many of the environmental problems related to dairy farming.  相似文献   

3.
Nutrient balances are useful indicators to assess the sustainability of farming systems. This study study investigates inflow and outflow of major nutrients in urban and periurban production systems in Kano, Nigeria. To this end, 16 households representing three different urban and peri-urban (UPA) farming systems were studied using the MONQI toolbox (formerly known as NUTMON) to calculate nutrient flows and economic performances. The farm nitrogen (N) balance was positive at 56.6, 67.4 and 56.4 kg farm?1 year?1 for commercial garden and crop-livestock (cGCL), commercial gardening and semi-commercial livestock (cGscL) and commercial livestock subsistence field cropping (cLsC) farm types, respectively. The same trend was observed for phosphorus (P) and potassium (K) in all farm types except an annual negative K balance of 16 kg farm?1 in cGCL. Across the different activities within the farms, land uses had positive N (359, 387 and 563 kg N ha?1 year?1) and P (74, 219 and 411 kg P ha?1 year?1) balances for all farm types, but again a negative K balance in cGCL with an average loss of 533 kg K ha?1 year?1. Partial nutrient balances in livestock production indicated a positive balance for all nutrients across the farms types but were slightly negative for P in cLsC. Commercial livestock keeping (cLsC) was economically more profitable than the other farm types with an average annual gross margin (GM) and net cash flow (NCF) of $9,033 and $935. Cropping activities within cGCL and cGscL had GMs of $1,059 and $194 and NCFs of $757 and $206, respectively, but livestock activities in both farm types incurred financial losses. Potassium inputs were limited under vegetable and crop production of cGCL, threatening long-term K nutrient availability in this system. Overall, the results indicated large annual surpluses of N and P in urban and peri-urban vegetable and crop production systems which pose a potential threat when lost to the environment. Appropriate policies should aim at promoting sustainable production through efficient nutrient management in the Kano UPA sector.  相似文献   

4.
Farm nitrogen flows of four farmer field schools in Kenya   总被引:1,自引:1,他引:0  
Re-use of nutrients within farming systems contributes to sustainable food production in nutrient limited production systems. Re-use is established when nutrients pass through several farm compartments before they leave the farm via marketable products. In this paper re-use of nitrogen is examined as an indicator for sustainable soil fertility management. Re-use (RU, kg farm−1) was defined as the amount of nitrogen that was translocated within one farm divided by the sum of transitions between farm compartments within a farm. In 2002, a total of 101 farms belonging to 4 farmer field schools in Kenya were analysed using the NUTMON (now known as MonQI) toolbox. The farms were distributed over 4 farmer field schools located in two agro-ecological zones. RU was positively related to the net farm income and to crop yields. However, data were scattered and often local farm conditions veiled the relation between nitrogen management strategies and farm performances. The results of this paper demonstrate that different agro-ecological zones with diverse production constraints have developed different in-farm nitrogen management strategies that are best adapted to the local conditions, but may have different environmental impacts. An erratum to this article can be found at  相似文献   

5.
Legume biological N fixation (BNF) is a large source of uncertainty in farm N budgets. This study sought to quantify the BNF-N input to two whole farm nitrogen budgets and establish a simple and accurate method for incorporating BNF values as inputs in whole farm N budgets. Nitrogen inputs and outputs as well as flows of N between animal and crop production components were determined for a dairy farm in New Brunswick (NB) and Prince Edward Island (PE) over a two year period. The 15N natural abundance method was used to determine the %N derived from the atmosphere (%Ndfa) through BNF at both sites. Red clover (Trifolium pratense) at the PE site derived 77 % of its N from BNF and alfalfa (Medicago sativa) collected at both the PE and NB farms derived 72 % of its N from BNF. Total BNF-N present in legume biomass from mixed forage fields measured with the 15N natural abundance method ranged from 39 to 116 kg N ha?1 year?1. A legume dry matter conversion model adjusted with %Ndfa and %N of red clover and alfalfa samples from both farm sites was selected to estimate BNF-N inputs from mixed forage fields on the farms. Averaged across the entire cropland area at each farm site, the BNF-N inputs ranged from 27 to 52 kg N ha?1 year?1. The farmgate BNF-N inputs are low in comparison to other studies, possibly due to low legume contents in forage fields. BNF accounted for 18–29 % of farmgate N inputs at the farms. Surpluses of N found at both farm sites ranged from 98 to 135 kg N ha?1 year?1, typical to the whole farm N budgets of similar dairy farms.  相似文献   

6.
Inputs of phosphorus (P) above requirements for production on dairy farms lead to surplus P with increased risk of P transfer in land run-off to surface waters causing eutrophication. The impact of reducing surplus P inputs in purchased feeds and fertilizers on milk and forage production was investigated in a comparison of three dairy farm systems on chalkland soils in southern England over a 3-year period. In accordance with current commercial practice, no attempt was made to regulate P inputs in system 1, which accumulated an average annual surplus of 23 kg P ha-1. Progressive reductions in purchased feed and/or fertilizer inputs into systems 2 and 3 decreased surplus P to 17 and 3 kg ha-1, respectively, without apparently limiting either milk or herbage dry matter production. The estimated reduction in faecal P output from system 3 cows fed a low P diet compared to system 1 cows fed a high P diet was 26%. Milk P concentrations significantly (P <0.001) increased in systems 2 and 3 which included maize in the diet. Output of P in milk and meat products, as a proportion of the total dietary P inputs, increased from 28% in system 1 to 36% in system 3. Surplus P was greatest in continuous maize fields receiving both dairy manure and starter P fertilizer. Withholding P fertilizer in system 3 did not reduce P offtake in cut herbage on soils of moderate P fertility. Total annual losses of P in storm run-off and leaching were no greater than annual inputs of P from the atmosphere (0.5 kg ha-1). The results indicate there is scope to reduce surplus P on commercial dairy farms without sacrificing production targets at least in the short term. Purchased feeds are the largest of the P inputs on intensive dairy farms, yet these are rarely quantified on commercial holdings.  相似文献   

7.
This study quantifies soil nutrient balances of Integrated Agriculture-Aquaculture Systems in the Mekong Delta of Vietnam. Eleven farms were monitored to collect data on farm activities and nutrient inputs and outputs to compute these balances of the rice-based and high input fish system in O Mon district (R-HF); the rice-based and medium input fish system in Tam Binh district (R-MF); and the orchard-based and low input fish system in Cai Be district (O-LF). For the estimation, the Nutmon model has been adapted to the specific conditions in these integrated systems in Asia (Nutmon-Asia). New regression models of leaching and gaseous losses of nitrogen were applied to fields used for upland crops and paddy rice. Reference values were used for the assessment of nitrogen fixation in paddy soils, wet atmospheric deposition, and irrigation water. The results showed that farms in all three systems have nitrogen, phosphorus and potassium surpluses (84 kg N, 73 kg P, and 69 kg K ha−1 year−1). The O-LF system had the smallest nitrogen surplus while the smallest surplus of phosphorus and potassium was seen in the R-HF system. High surpluses of phosphorus and potassium were found in vegetable fields, whereas a negative potassium balance was found in the rice fields of all three systems. The positive farm nutrient balances indicate that it is likely that soil fertility will be maintained although there is a risk for environmental contamination.  相似文献   

8.
Farmgate balances (FGBs), defined as the difference between nutrient input and nutrient output at farm level, are currently used as a tool to monitor changes in nitrogen (N) and phosphorus (P) leaching to groundwater and surface water. We postulate that the estimator value of FGBs for N and P leaching to groundwater and surface water depends on (1) the distribution of N and P surpluses over fields within farms, and (2) the partitioning of the surplus over the various nutrient loss pathways. In this study, we assessed intra-farm variability of N and P surpluses and its possible consequences on N leaching to surface waters. Furthermore, we investigated the effect of policies to decrease N and P surpluses at farm level on N and P surpluses at field level. FGBs were derived for six dairy farms in a hydrologically rather isolated polder with grassland on peat soil for three years (1999, 2000 and 2001). Soil surface balances (SSBs), defined as the differences between nutrient input and nutrient output at field level, were derived for the accompanying 65 fields for the same years. On average, FGB surpluses decreased from 271 kg N ha–1 y–1 and 22 kg P ha–1 y–1 in 1999 to 213 kg N ha–1 y–1 and 13 kg P ha–1 y–1 in 2001. Variances in N and P surpluses between fields per farm were compared with variances between farms. For N, variances between fields per farm exceeded variances between farms for all years. A non-linear model was fitted on the measured N loading of the surface water. This model showed that N leaching to surface water was underestimated by 5–46% if the variability in N surpluses between fields per farm was not taken into account. We concluded that estimation of N leaching to surface water, based on data at farm level, can lead to underestimation of the N leaching due to the large variability in N surpluses between fields per farm. The extent of this bias by a given distribution of N surpluses within farms was largely controlled by the partitioning of the N surplus over the various nutrient loss pathways, notably denitrification.  相似文献   

9.
Current and potential environmental problems associated with P transport from lands receiving high application rates of animal waste are a major concern. Phosphorus management strategies are needed to reduce P loading on land. This study was conducted to compare on-farm P budgets for a modern broiler farm and a dairy farm under traditional diets and management practices. Phosphorus inputs, recycling and outputs were assessed for both farms. A typical broiler and a dairy farmer from North Carolina were interviewed and pertinent information for the study was obtained, in cooperation with extension agents, and other professionals associated with the farms. The annual on-farm P surplus for the broiler farm was 6,380 kg, while that for the dairy farm was 1,141 kg. This corresponds to an annual application of 65 kg P ha–1 for the broiler farm and 20 kg P ha–1 for the dairy farm in excess of removal. The potential for reducing P surpluses by the addition of phytase enzymes and/or the use of low phytic acid corn (Zea mays L.) feed in the broiler farm diet was also assessed. Estimates by animal nutritionists indicate that feed supplementation with phytase enzyme can reduce the broiler farm's P surplus by 33%. The use of low phytic acid corn can reduce the surplus by 49% and a combination of the two can reduce the surplus by 58%. In this study, the incorporation of soybean (Glycine max (L.) Merr.) and alfalfa (Medicago sativa) land into the waste utilization plan of the dairy farm decreases the annual P surplus from 20 to 9 kg P ha–1. The use of new feed technology and expanding waste application to a larger land base can significantly alter the P budgets of broiler and dairy farms and reduce P surpluses, minimizing the risk of environmental problems.  相似文献   

10.
In the Seine Basin, characterised by intensive arable crops, most of the surface and groundwater is contaminated by nitrate (NO3 ?). The goal of this study is to investigate nitrogen leaching on commercial arable crop farms in five organic and three conventional systems. In 2012–2013, a total of 37 fields are studied on eight arable crop rotations, for three different soil and climate conditions. Our results show a gradient of soil solution concentrations in function of crops, lower for alfalfa (mean 2.8 mg NO3-N l?1) and higher for crops fertilised after legumes (15 mg NO3-N l?1). Catch crops decrease nitrate soil solution concentrations, below 10 mg NO3-N l?1. For a full rotation, the estimated mean concentrations is lower for organic farming, 12 ± 5 mg NO3-N l?1 than for conventional farming 24 ± 11 mg NO3-N l?1, with however a large range of variability. Overall, organic farming shows lower leaching rates (14–50 kg NO3-N ha?1) than conventional farms (32–77 kg NO3-N ha?1). Taking into account the slightly lower productivity of organic systems, we show that yield-scaled leaching values are also lower for organic (0.2 ± 0.1 kg N kg?1 N year?1) than for conventional systems (0.3 ± 0.1 kg N kg?1 N year?1). Overall, we show that organic farming systems have lower impact than conventional farming on N leaching, although there is still room for progress in both systems in commercial farms.  相似文献   

11.
Nitrogen (N) is the most important yield-limiting factor in agricultural systems, however, N application can lead to emissions and environmental problems such as global warming (N2O) and groundwater contamination (NO3 ?). This study analyses the N balance, nitrogen-use efficiency, and N loss potential of conventional farming systems (arable farming, improved arable farming, and agroforestry) and organic farming systems (mixed farming, arable farming, and agroforestry) based on long-term field experiments in southern Germany. The effects of the conversion of farm structure and N management are identified. The conventional farming systems in this study were high N-input and high N-output systems. The conventional arable farming system had the lowest nitrogen-use efficiency and the highest N surplus. An optimised N management and the use of high-yielding crop varieties improved its nitrogen-use efficiency. The establishment of conventional agroforestry resulted in the reduction of N input, N output and N surplus, while maintaining high yields. The organic mixed farming system is characterised by a relatively high N input and N output, the accumulation of soil organic nitrogen, the highest nitrogen-use efficiency, and the lowest N surplus of all analysed systems. These good results can be attributed to the intensive farm N cycle between soil–plant–animal. The shift from organic mixed farming to organic arable farming system extensified the N cycle, reduced N input, crop yield and N output. The change from organic arable farming to organic agroforestry reduced the N input, increased the biomass yield, and remained the N surplus within an optimal range.  相似文献   

12.
Research on nutrient losses from agricultural systems should try to relate these losses to farm characteristics. This was done for private farms in two districts in Poland. Using data from a farm survey, nutrient surpluses and Nutrient Use Efficiency (NUE, defined as the ratio of outgoing and incoming nutrients) were calculated for nitrogen and phosphorus. Both nutrient surplus and NUE are relatively high. A model was developed to estimate surpluses and NUE from farm characteristics like location, farm size, fertilizer application level, animal density, grass production and sugar beet or potato area. The results of the model are satisfying for nutrient surplus (R2=0.9) and nitrogen NUE (R2=0.4). Estimation of phosphorus NUE was not satisfactory. High surpluses are associated with high fertilizer applications, high animal density and high grass production while an increasing share of sugar beets leads to lower surpluses. A high nitrogen NUE is associated with low fertilizer applications, low animal density and little grass production, and with a high sugar beet area share. Results suggest that, with exception of sugar beet, fertilizer recovery in Poland is very low. Sugar beet, however, combines high fertilizer applications with low surpluses and high NUE. The outcome of the model can be used in the design of environmental policies. The paper ends with some remarks on the type of measures that can be taken, and the effects these will have on private farms in Poland.  相似文献   

13.
Increased demand for certified organic products has led to an increase in the number of certified organic farms in developing countries. Knowledge of farmer nutrient management practices on certified organic farms in developing countries is limited. Thus, the aim of this study was to investigate the impact of the adoption of certified organic agriculture on farm nutrient flows and nutrient budgets, and evaluate to which degree organic farms comply with organic principles relating to nutrient management. The study is based on five case studies of different types of certified organic farming systems in Brazil, Egypt and China. Farm nutrient flows and nutrient budgets for nitrogen, phosphorous and potassium were created for each farm. Four of the five organic systems studied had nutrient surpluses on the farm budget. The surpluses were of varying magnitude. The main difference between organic and non-organic farm nutrient flows was the replacement of mineral fertilizers with organic inputs. However, the magnitude of nutrient flows were generally similar for organic and non-organic farms. Certified organic farms with positive nutrient budgets had a heavy reliance on external inputs. Continued high dependence on an external supply of nutrients, which typically originate from mineral sources, poses a significant challenge to organic farmers’ fulfilment of the principles of organic agriculture.  相似文献   

14.
A suggested increase in the growth of macrophytic algae within the Ythan estuary (N.E. Scotland) over recent years has been linked to the increased amounts of nitrogen in the form of NO3–N entering the estuary from the river. The increased NO3 concentration in the river has been associated with recent changes in farming practices in this predominantly agricultural catchment. Terrestrially derived phosphorus is also considered to contribute increasingly to eutrophication of fresh waters. Historical agricultural census data together with appropriate surveys of fertilizer practice were used to calculate the total quantities of fertilizer and manure derived N and P applied annually over the wholeYthan catchment during the period 1960 – 1990. While the total agricultural land area has remained similar, significant changes in cropping practice have occurred. In particular, a greater proportion of land is given to autumn sown crops while the area of grassland has declined. These changes in farming practice are associated with differences in both the total amounts and timing of fertilizer applied. The use of inorganic N in the catchment has trebled since 1960 and is currently approximately 6400 tonnes (104 kg N/ha). The use of P has decreased by more than a quarter to 1274 tonnes (21 kg P/ha) over a similar time period. There has been no obvious change in total quantity of N and P derived from animal manures, estimated to be 44 and 11 kg per ha, respectively, when averaged over the area of agricultural land. Cattle and sheep numbers have remained relatively constant and together account for approximately 80% of the manure N and 70% of the manure P produced annually. However, poultry have declined by 70% since 1960 while pig numbers have increased six-fold. The average annual application rate of manure derived N over the whole catchment (44 kg/ha) is considerably below that proposed at the farm scale in the EC Nitrate Directive (210–170 kg/ha). However, on a local scale difficulties may arise for large manure producing concerns such as dairy or pig units.  相似文献   

15.
High levels of nitrogen (N) contamination of ground and surface water are still detected at European and national scales, despite the implementation of Directives, highlighting the need to improve understanding of changes in N pressure. Soil surface nitrogen balance was investigated at the county level in France over a 70-year period to identify areas with high N surpluses and trends in N pressure. Soil surface nitrogen balances were calculated for 90 NUTS3 (Nomenclature of Territorial Units for Statistics in the EU) called ‘departments’ (ranging from 611 to 10,145 km2, median surface area 6032 km2) and one NUTS2 entity. Over the whole period, the N surplus calculated for France as a whole averaged 37 kgN per ha of utilized agricultural area (UAA) and departmental N surpluses mean ranged from 10 to 86 kgN ha UAA?1. Imprecision, i.e. an 80% confidence interval in N surpluses, was calculated using Monte Carlo simulation. Average imprecision for the whole period ranged from 6 to 45 kgN ha UAA?1 across different departments. Analysis revealed that yearly and departmental imprecision values were mainly correlated with N export (R2 = 0.46). Despite this imprecision, the soil surface nitrogen balance was found to be a consistent and suitable tool to determine trends in N pressure at the department level. The model revealed an upward trend in N surplus until the 1990s for 82% of the area studied, and a downward or stable trend for more than 90% of the area since the European Nitrates Directive has been implemented.  相似文献   

16.
Organic farming systems are often nutrient-limited. Moreover, even if organic guidelines emphasize the reliance on ecological processes and recycling, the trend towards farm specialisation induces an increased reliance on off-farm fertilising materials in arable areas. There is, therefore, a need to better understand the drivers of nutrient inflows on organic farms. Our objectives were to assess the nitrogen (N,) phosphorus (P) and potassium (K) farm-gate inflows through fertilising materials, and the nutrient budget and use efficiency over a large range of organic farming systems. To do this, 56 interviews with organic farmers concerning their nutrient management for the years 2010 and 2011 were carried out in 2012 in three French agricultural districts distributed over a gradient of farming activity. The results showed that the farm-gate fertilising material inflows were strongly related to both the ratio of land under cereal and oilseed crops (proxy of nutrient ‘demand’) and the stocking rate (proxy of nutrient ‘supply’). However, other inflows (biological N fixation, feed use, fodders and straws) increased with the stocking rate, leading to low farm-gate N and K use efficiency (0.2 and 0.7, respectively) on livestock farms compared to arable, stockless farms (1.4 and 3.5, respectively). Such results helped to disentangle the drivers of nutrient use in organic farms compared to previous analyses based solely on farm production typology.  相似文献   

17.
Dairy farming is the main agricultural activity of the Basque Country. A dairy farm is characterized as a system with soils and crops, forage, cattle and manure as main components, and in such a system, nutrient cycling is very important to maintain soil fertility and optimize forage production. To quantify nutrient transfers in the cycle, a simple system was developed and has been applied to seventeen farms to examine its ability to achieve a balanced P and K fertilization. These farms have provided data on inputs (fertilizer, feeds, concentrates), pasture and manure management, and outputs (milk production), and soil samples have been taken from farm pastures. Phosphorus and K in excreta and uneaten pasture is used with a relatively high efficiency as suggested by the relatively high efficiency of P and K utilization by the pasture that usually ranges from 70 to 90%. Concentrate feeding (3000 kg cow–1 yr–1) represents one of the main P and K inputs in Basque Country dairy farms, averaging 26 and 66 kg ha–1, respectively. Besides, release of K in the soil through slow liberation from non-exchangeable sites was estimated as 30 kg ha–1. Thus, a high efficiency in excreta recycling would diminish substantially P and K mineral fertilizer needs. Farm nutrient budgets appear to be a convenient tool for determining nutrient shortages and surpluses at farm level, and thus they are considered as a first step to support a better management of maintenance fertilization of permanent pastures.  相似文献   

18.
Nitrate contamination of groundwater: Measurement and prediction   总被引:1,自引:0,他引:1  
Agriculture makes a significant contribution to the diffuse source contamination of surface and groundwater resources, particularly contributing to the NO 3 - contamination of groundwater. Two approaches were adopted to evaluate management practices (within the context of the whole farming system) for their impacts on the environment : (1) measurement of the quality of groundwater under different farming systems, and (2) comparison of predictions of the impact of farming systems on water quality, obtained using whole farm N budgets, with measured values.The Ontario Farm Groundwater Quality Survey evaluated the rural groundwater quality in Ontario, with respect to common contaminants including NO 3 - . Approximately 1300 domestic farm wells were sampled, and wells were drilled in some fields of farms involved in the study. NO 3 - was present at concentrations above the maximum acceptable for drinking water (10 mg N 1–1) in 14% of wells, including 7% of wells that also had unacceptable concentrations of coliform bacteria. Significant levels of NO 3 - contamination were observed under most agricultural land use practices investigated.Calculation of N budgets was simplified by assuming that there was no net change in the N content of farm assets. The N inputs to agricultural systems considered were: purchases from off-farm suppliers, N2 fixation and atmospheric deposition. Symbiotic N2 fixation was estimated from empirical relationships between crop yield and N2 fixed. The N outputs were in sales of plant and animal produce, gaseous and leaching losses. Gaseous loss was assumed to result only from volatilization of ammonia, estimated to be 39% of total manure N.We have identified one cash crop farming system where there was a true balance. The rotation included corn soybeans and wheat, with two years of soybean always being grown before corn. Many livestock farms, including two organic farms, gave large imbalances of N which might indicate that these operations were not in equilibrium.The relationship between measured and predicted values of NO 3 - -N expected in the groundwater under the different management systems showed that the simplified N budget overestimated the NO 3 - -N concentration by about one third. However, the budget approach appeared to identify farms where contamination was likely even if the actual amount was over estimated. Simplified budgets could therefore be used to compare the potential of different farming systems for causing environmental contamination.  相似文献   

19.
In this study N2O emissions from agriculture in Belgium have been split up per agro-pedological region and calculated per farm type. The N2O emissions were calculated according to the `Revised 1996 IPCC guidelines for national greenhouse gas inventories'. Input data were weighed averages of the N balance of a large number of farms per agro-pedological region and per farm type. As such, the input data represent a theoretical farm in each agro-pedological region and for each distinguished farm type. In a first part, N2O emissions were calculated for 10 agro-pedological regions in Belgium. The yearly N2O emissions varied between 225 and 462 kg N2O-N. The highest N2O emissions (around 400 kg N2O-N yr−1) were found in regions with fertile soils, dominated by crop production or a combination of crop production and cattle breeding. The lowest emissions (around 250 kg N2O-N yr−1) were found in regions with extensive cattle breeding. N2O emissions of 300 ± 15 kg N2O-N yr−1 were found in regions with less extensive cattle breeding or in regions with combinations of cattle, pig and poultry breeding. The N2O emission per ha varied between 6 and 14 kg N2O-N yr−1. In a second part, N2O emissions were calculated for 12 different farm types. The yearly N2O emissions varied between 273 and 512 kg N2O-N. The highest emissions were found on farms with crop production or a combination of crop production and cattle breeding. The lowest emissions were found on farms specialised in only one activity of animal breeding. Specialised pig farms and farms with combinations of cattle caused the greatest threat with respect to N2O releases from agriculture. Their N2O emission per ha was 18–40 kg N2O-N yr−1, which was significantly higher than the average N2O release (10 kg N2O-N yr−1 ha−1) for the other farm types. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A field experiment with the winter wheat cultivar Donata was carried out on a fine-textured river clay soil in 1978. The rates of nitrogen dressing ranged from 0 to 160 kg N per ha and were split over from one up to three application times: autumn, early spring and late spring.Total above-ground dry matter and grain dry-weight yields ranged from 9.1 to 13.7 tons per ha and from 4.17 to 6.35 tons per ha, respectively. Late top-dressings increased the harvest-index, whereas an autumn dressing had the opposite effect. Number of culms per m2, grain weight (mg) and grain number per m2 increased from 350 to 430, from 35.5 to 36.8 and from 11 680 to 16 980, respectively, as the nitrogen dosage was raised from 0 to 160 kg N per ha.The linear rate of grain growth ranged from 111 to 172 kg dry matter per ha per day with nitrogen doses from 0 to 160 kg N per ha. Differences in rate of grain growth per unit area were mainly related to number of grains per m2. The association between grain number and grain yield was reflected by a correlation coefficient of 0.97 (n = 32). A higher level of nitrogen dressing enhanced the leaf area index and leaf area duration. However, we could not derive an effect of nitrogen on the duration of grain growth.Total nitrogen yield ranged from 71 to 166 kg N per ha and grain nitrogen yield from 54 to 122 kg N per ha with nitrogen dosages of 0 and 160 kg N per ha, respectively. The nitrogen concentration of the grains varied between 1.3 and 2.0 N.An autumn dressing of 40 kg N per ha generally showed only minor effects on yield and yield components. Top dressings during spring resulted in a higher recovery and efficiency of the applied nitrogen. Therefore, it may be concluded from this experiment and literature that on fertile soils an autumn dressing of nitrogen will not be economical, but split-dressings in spring are very beneficial. In particular, a late nitrogen application during the boot stage increased grain number, harvest-index and grain yield as well as protein concentration of the grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号