首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.  相似文献   

2.
In this article, we present a unified error analysis of two-grid methods for a class of nonlinear problems. We first study the two-grid method of Xu by recasting the methodology in the abstract framework of Brezzi, Rappaz, and Raviart (BRR) for approximation of branches of nonsingular solutions and derive a priori error estimates. Our convergence results indicate that the correct scaling between fine and coarse meshes is given by \(h={{\mathcal {O}}}(H^2)\) for all the nonlinear problems which can be written in and applied to the BRR framework. Next, a correction step can be added to the two-grid algorithm, which allows the choice \(h={\mathcal O}(H^3)\). On the other hand, the particular BRR framework with duality pairing, if it is applied to a semilinear problem, allows a higher order relation \(h={{\mathcal {O}}}(H^4)\). Furthermore, even the choice \(h={{\mathcal {O}}}(H^5)\) is possible with the correction step either on fine mesh or coarse mesh. In addition, elliptic problems with gradient nonlinearities and the Naiver–Stokes equations are considered to illustrate our unified theory. Finally, numerical experiments are conducted to confirm our theoretical findings. Numerical results indicate that the correction step used as a simple postprocessing enhances the solution accuracy, particularly for problems with layers.  相似文献   

3.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

4.
In this paper, we consider the nonlinear boundary value problems involving the Caputo fractional derivatives of order \(\alpha \in (1,2)\) on the interval (0, T). We present a Legendre spectral collocation method for the Caputo fractional boundary value problems. We derive the error bounds of the Legendre collocation method under the \(L^2\)- and \(L^\infty \)-norms. Numerical experiments are included to illustrate the theoretical results.  相似文献   

5.
In this paper, we present unconditionally optimal error estimates of linearized Crank–Nicolson Galerkin finite element methods for a strongly nonlinear parabolic system in \(\mathbb {R}^d\ (d=2,3)\). However, all previous works required certain time-step conditions that were dependent on the spatial mesh size. In order to overcome several entitative difficulties caused by the strong nonlinearity of the system, the proof takes two steps. First, by using a temporal-spatial error splitting argument and a new technique, optimal \(L^2\) error estimates of the numerical schemes can be obtained under the condition \(\tau \ge h\), where \(\tau \) denotes the time-step size and h is the spatial mesh size. Second, we obtain the boundedness of numerical solutions by mathematical induction and inverse inequality when \(\tau \le h\). Then, optimal \(L^2\) and \(H^1\) error estimates are proved in a different way for such case. Numerical results are given to illustrate our theoretical analyses.  相似文献   

6.
A linearized Crank–Nicolson Galerkin finite element method with bilinear element for nonlinear Schrödinger equation is studied. By splitting the error into two parts which are called the temporal error and the spatial error, the unconditional superconvergence result is deduced. On one hand, the regularity for a time-discrete system is presented based on the proof of the temporal error. On the other hand, the classical Ritz projection is applied to get the spatial error with order \(O(h^2)\) in \(L^2\)-norm, which plays an important role in getting rid of the restriction of \(\tau \). Then the superclose estimates of order \(O(h^2+\tau ^2)\) in \(H^1\)-norm is arrived at based on the relationship between the Ritz projection and the interpolated operator. At the same time, global superconvergence property is arrived at by the interpolated postprocessing technique. At last, three numerical examples are provided to confirm the theoretical analysis. Here, h is the subdivision parameter and \(\tau \) is the time step.  相似文献   

7.
In many parallel and distributed multiprocessor systems, the processors are connected based on different types of interconnection networks. The topological structure of an interconnection network is typically modeled as a graph. Among the many kinds of network topologies, the crossed cube is one of the most popular. In this paper, we investigate the panpositionable panconnectedness problem with respect to the crossed cube. A graph G is r-panpositionably panconnected if for any three distinct vertices x, y, z of G and for any integer \(l_1\) satisfying \(r \le l_1 \le |V(G)| - r - 1\), there exists a path \(P = [x, P_1, y, P_2, z]\) in G such that (i) \(P_1\) joins x and y with \(l(P_1) = l_1\) and (ii) \(P_2\) joins y and z with \(l(P_2) = l_2\) for any integer \(l_2\) satisfying \(r \le l_2 \le |V(G)| - l_1 - 1\), where |V(G)| is the total number of vertices in G and \(l(P_1)\) (respectively, \(l(P_2)\)) is the length of path \(P_1\) (respectively, \(P_2\)). By mathematical induction, we demonstrate that the n-dimensional crossed cube \(CQ_n\) is n-panpositionably panconnected. This result indicates that the path embedding of joining x and z with a mediate vertex y in \(CQ_n\) is extremely flexible. Moreover, applying our result, crossed cube problems such as panpositionable pancyclicity, panpositionably Hamiltonian connectedness, and panpositionable Hamiltonicity can be solved.  相似文献   

8.
We consider scheduling of unit-length jobs with release times and deadlines, where the objective is to minimize the number of gaps in the schedule. Polynomial-time algorithms for this problem are known, yet they are rather inefficient, with the best algorithm running in time \(O(n^4)\) and requiring \(O(n^3)\) memory. We present a greedy algorithm that approximates the optimum solution within a factor of 2 and show that our analysis is tight. Our algorithm runs in time \(O(n^2 \log n)\) and needs only O(n) memory. In fact, the running time is \(O(n (g^*+1)\log n)\), where \(g^*\) is the minimum number of gaps.  相似文献   

9.
In this paper, we propose a locking-free stabilized mixed finite element method for the linear elasticity problem, which employs a jump penalty term for the displacement approximation. The continuous piecewise k-order polynomial space is used for the stress and the discontinuous piecewise \((k-1)\)-order polynomial space for the displacement, where we require that \(k\ge 3\) in the two dimensions and \(k\ge 4\) in the three dimensions. The method is proved to be stable and k-order convergent for the stress in \(H(\mathrm {div})\)-norm and for the displacement in \(L^2\)-norm. Further, the convergence does not deteriorate in the nearly incompressible or incompressible case. Finally, the numerical results are presented to illustrate the optimal convergence of the stabilized mixed method.  相似文献   

10.
We propose a new technique for computing highly accurate approximations to linear functionals in terms of Galerkin approximations. We illustrate the technique on a simple model problem, namely, that of the approximation of J(u), where \(J(\cdot )\) is a very smooth functional and u is the solution of a Poisson problem; we assume that the solution u and the solution of the adjoint problem are both very smooth. It is known that, if \(u_h\) is the approximation given by the continuous Galerkin method with piecewise polynomials of degree \(k>0\), then, as a direct consequence of its property of Galerkin orthogonality, the functional \(J(u_h)\) converges to J(u) with a rate of order \(h^{2k}\). We show how to define approximations to J(u), with a computational effort about twice of that of computing \(J(u_h)\), which converge with a rate of order \(h^{4k}\). The new technique combines the adjoint-recovery method for providing precise approximate functionals by Pierce and Giles (SIAM Rev 42(2):247–264, 2000), which was devised specifically for numerical approximations without a Galerkin orthogonality property, and the accuracy-enhancing convolution technique of Bramble and Schatz (Math Comput 31(137):94–111, 1977), which was devised specifically for numerical methods satisfying a Galerkin orthogonality property, that is, for finite element methods like, for example, continuous Galerkin, mixed, discontinuous Galerkin and the so-called hybridizable discontinuous Galerkin methods. For the latter methods, we present numerical experiments, for \(k=1,2,3\) in one-space dimension and for \(k=1,2\) in two-space dimensions, which show that \(J(u_h)\) converges to J(u) with order \(h^{2k+1}\) and that the new approximations converges with order \(h^{4k}\). The numerical experiments also indicate, for the p-version of the method, that the rate of exponential convergence of the new approximations is about twice that of \(J(u_h)\).  相似文献   

11.
A novel discontinuous Galerkin (DG) method is developed to solve time-dependent bi-harmonic type equations involving fourth derivatives in one and multiple space dimensions. We present the spatial DG discretization based on a mixed formulation and central interface numerical fluxes so that the resulting semi-discrete schemes are \(L^2\) stable even without interior penalty. For time discretization, we use Crank–Nicolson so that the resulting scheme is unconditionally stable and second order in time. We present the optimal \(L^2\) error estimate of \(O(h^{k+1})\) for polynomials of degree k for semi-discrete DG schemes, and the \(L^2\) error of \(O(h^{k+1} +(\Delta t)^2)\) for fully discrete DG schemes. Extensions to more general fourth order partial differential equations and cases with non-homogeneous boundary conditions are provided. Numerical results are presented to verify the stability and accuracy of the schemes. Finally, an application to the one-dimensional Swift–Hohenberg equation endowed with a decay free energy is presented.  相似文献   

12.
A new weak Galerkin (WG) finite element method is developed and analyzed for solving second order elliptic problems with low regularity solutions in the Sobolev space \(W^{2,p}(\Omega )\) with \(p\in (1,2)\). A WG stabilizer was introduced by Wang and Ye (Math Comput 83:2101–2126, 2014) for a simpler variational formulation, and it has been commonly used since then in the WG literature. In this work, for the purpose of dealing with low regularity solutions, we propose to generalize the stabilizer of Wang and Ye by introducing a positive relaxation index to the mesh size h. The relaxed stabilization gives rise to a considerable flexibility in treating weak continuity along the interior element edges. When the norm index \(p\in (1,2]\), we strictly derive that the WG error in energy norm has an optimal convergence order \(O(h^{l+1-\frac{1}{p}-\frac{p}{4}})\) by taking the relaxed factor \(\beta =1+\frac{2}{p}-\frac{p}{2}\), and it also has an optimal convergence order \(O(h^{l+2-\frac{2}{p}})\) in \(L^2\) norm when the solution \(u\in W^{l+1,p}\) with \(p\in [1,1+\frac{2}{p}-\frac{p}{2}]\) and \(l\ge 1\). It is recovered for \(p=2\) that with the choice of \(\beta =1\), error estimates in the energy and \(L^2\) norms are optimal for the source term in the sobolev space \(L^2\). Weak variational forms of the WG method give rise to desirable flexibility in enforcing boundary conditions and can be easily implemented without requiring a sufficiently large penalty factor as in the usual discontinuous Galerkin methods. In addition, numerical results illustrate that the proposed WG method with an over-relaxed factor \(\beta (\ge 1)\) converges at optimal algebraic rates for several low regularity elliptic problems.  相似文献   

13.
This paper is concerned with the unconditional and optimal \(L^{\infty }\)-error estimates of two fourth-order (in space) compact conservative finite difference time domain schemes for solving the nonlinear Schrödinger equation in two or three space dimensions. The fact of high space dimension and the approximation via compact finite difference discretization bring difficulties in the convergence analysis. The two proposed schemes preserve the total mass and energy in the discrete sense. To establish the optimal convergence results without any constraint on the time step, besides the standard energy method, the cut-off function technique as well as a ‘lifting’ technique are introduced. On the contrast, previous works in the literature often require certain restriction on the time step. The convergence rate of the proposed schemes are proved to be of \(O(h^4+\tau ^2)\) with time step \(\tau \) and mesh size h in the discrete \(L^{\infty }\)-norm. The analysis method can be directly extended to other finite difference schemes for solving the nonlinear Schrödinger-type equations. Numerical results are reported to support our theoretical analysis, and investigate the effect of the nonlinear term and initial data on the blow-up solution.  相似文献   

14.
A set of high-order compact finite difference methods is proposed for solving a class of Caputo-type fractional sub-diffusion equations in conservative form. The diffusion coefficient of the equation may be spatially variable, and the proposed methods have the global convergence order \(\mathcal{O}(\tau ^{r}+h^{4})\), where \(r\ge 2\) is a positive integer and \(\tau \) and h are the temporal and spatial steps. Such new high-order compact difference methods greatly improve the known methods in the literature. The local truncation error and the solvability of the methods are discussed in detail. By applying a discrete energy technique to the matrix form of the methods, a rigorous theoretical analysis of the stability and convergence of the methods is carried out for the case of \(2\le r\le 6\), and the optimal error estimates in the weighted \(H^{1}\), \(L^{2}\) and \(L^{\infty }\) norms are obtained for the general case of variable coefficient. Applications are given to two model problems, and some numerical results are presented to illustrate the various convergence orders of the methods.  相似文献   

15.
We study the following energy-efficient scheduling problem. We are given a set of n jobs which have to be scheduled by a single processor whose speed can be varied dynamically. Each job \(J_j\) is characterized by a processing requirement (work) \(p_j\), a release date \(r_j\), and a deadline \(d_j\). We are also given a budget of energy E which must not be exceeded and our objective is to maximize the throughput (i.e., the number of jobs which are completed on time). We show that the problem can be solved optimally via dynamic programming in \(O(n^4 \log n \log P)\) time when all jobs have the same release date, where P is the sum of the processing requirements of the jobs. For the more general case with agreeable deadlines where the jobs can be ordered so that, for every \(i < j\), it holds that \(r_i \le r_j\) and \(d_i \le d_j\), we propose an optimal dynamic programming algorithm which runs in \(O(n^6 \log n \log P)\) time. In addition, we consider the weighted case where every job \(J_j\) is also associated with a weight \(w_j\) and we are interested in maximizing the weighted throughput (i.e., the total weight of the jobs which are completed on time). For this case, we show that the problem becomes \(\mathcal{NP}\)-hard in the ordinary sense even when all jobs have the same release date and we propose a pseudo-polynomial time algorithm for agreeable instances.  相似文献   

16.
In this paper, a linearized local conservative mixed finite element method is proposed and analyzed for Poisson–Nernst–Planck (PNP) equations, where the mass fluxes and the potential flux are introduced as new vector-valued variables to equations of ionic concentrations (Nernst–Planck equations) and equation of the electrostatic potential (Poisson equation), respectively. These flux variables are crucial to PNP equations on determining the Debye layer and computing the electric current in an accurate fashion. The Raviart–Thomas mixed finite element is employed for the spatial discretization, while the backward Euler scheme with linearization is adopted for the temporal discretization and decoupling nonlinear terms, thus three linear equations are separately solved at each time step. The proposed method is more efficient in practice, and locally preserves the mass conservation. By deriving the boundedness of numerical solutions in certain strong norms, an unconditionally optimal error analysis is obtained for all six unknowns: the concentrations p and n, the mass fluxes \({{\varvec{J}}}_p=\nabla p + p {\varvec{\sigma }}\) and \({{\varvec{J}}}_n=\nabla n - n {\varvec{\sigma }}\), the potential \(\psi \) and the potential flux \({\varvec{\sigma }}= \nabla \psi \) in \(L^{\infty }(L^2)\) norm. Numerical experiments are carried out to demonstrate the efficiency and to validate the convergence theorem of the proposed method.  相似文献   

17.
Constructions of quantum caps in projective space PG(r, 4) by recursive methods and computer search are discussed. For each even n satisfying \(n\ge 282\) and each odd z satisfying \(z\ge 275\), a quantum n-cap and a quantum z-cap in \(PG(k-1, 4)\) with suitable k are constructed, and \([[n,n-2k,4]]\) and \([[z,z-2k,4]]\) quantum codes are derived from the constructed quantum n-cap and z-cap, respectively. For \(n\ge 282\) and \(n\ne 286\), 756 and 5040, or \(z\ge 275\), the results on the sizes of quantum caps and quantum codes are new, and all the obtained quantum codes are optimal codes according to the quantum Hamming bound. While constructing quantum caps, we also obtain many large caps in PG(r, 4) for \(r\ge 11\). These results concerning large caps provide improved lower bounds on the maximal sizes of caps in PG(r, 4) for \(r\ge 11\).  相似文献   

18.
In this paper, we introduce a class of high order immersed finite volume methods (IFVM) for one-dimensional interface problems. We show the optimal convergence of IFVM in \(H^1\)- and \(L^2\)-norms. We also prove some superconvergence results of IFVM. To be more precise, the IFVM solution is superconvergent of order \(p+2\) at the roots of generalized Lobatto polynomials, and the flux is superconvergent of order \(p+1\) at generalized Gauss points on each element including the interface element. Furthermore, for diffusion interface problems, the convergence rates for IFVM solution at the mesh points and the flux at generalized Gauss points can both be raised to 2p. These superconvergence results are consistent with those for the standard finite volume methods. Numerical examples are provided to confirm our theoretical analysis.  相似文献   

19.
In this paper, we develop local discontinuous Galerkin method for the two-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in \(L^{\infty }(0, T; L^{2})\) for concentration c, \(L^{2}(0, T; L^{2})\) for \(\nabla c\) and \(L^{\infty }(0, T; L^{2})\) for velocity \(\mathbf{u}\) are derived. The main techniques in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method, the nonlinearity, and the coupling of the models. The main difficulty is how to treat the inter-element discontinuities of two independent solution variables (one from the flow equation and the other from the transport equation) at cell interfaces. Numerical experiments are shown to demonstrate the theoretical results.  相似文献   

20.
Let \(G=(V,E)\) be an unweighted undirected graph with n vertices and m edges, and let \(k>2\) be an integer. We present a routing scheme with a poly-logarithmic header size, that given a source s and a destination t at distance \(\varDelta \) from s, routes a message from s to t on a path whose length is \(O(k\varDelta +m^{1/k})\). The total space used by our routing scheme is \(mn^{O(1/\sqrt{\log n})}\), which is almost linear in the number of edges of the graph. We present also a routing scheme with \(n^{O(1/\sqrt{\log n})}\) header size, and the same stretch (up to constant factors). In this routing scheme, the routing table of every \(v\in V\) is at most \(kn^{O(1/\sqrt{\log n})}deg(v)\), where deg(v) is the degree of v in G. Our results are obtained by combining a general technique of Bernstein (2009), that was presented in the context of dynamic graph algorithms, with several new ideas and observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号