首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatigue problems in orthotropic steel decks have raised widely concerns in recent years. This study focused on the root crack mechanism at rib-to-deck welded joints, based on the previous test results of sectional specimens and the matching FE analysis, the fatigue behaviors of structure detail were investigated by considering the effect of root gap shapes, weld penetrations, and plate thicknesses on crack initiation. Besides, various root crack depths were simulated in models to clarify the stress variations occurring during the propagation stage under cyclic loading. The results showed that the root gap shape and penetration rate have an impact on the root cracking direction and fatigue life at the initiation stage, but seem not directly related to the crack propagation mechanism; the higher penetration rate is advantageous for the prevention of root crack initiation. However, although the stiffness increased with the increase in plate thickness, the fatigue life of crack initiation might be reduced owing to the low fatigue strength of the thick deck plate, whereas the U-rib thickness has limited effect on the stress response of the root tip. Moreover, the significant difference between the 8 mm-crack model and other crack models is the high stress concentration around the crack tip. The stress conditions of root tip would be changed under loading cycles when a root crack propagated into half of deck plate thickness. Finally, the effect of structural dimensions on fatigue strength were also compared according to test results and FEA.  相似文献   

2.
正交异性钢桥面板的疲劳开裂问题是制约桥梁工程可持续发展的关键难题,亟需发展具有高疲劳抗力特性的正交异性钢桥面板结构。依托深圳至中山跨江通道项目,在钢桥面板结构中同时引入纵肋与顶板新型双面焊构造细节和纵肋与横隔板新型交叉构造细节两类构造细节,设计9个足尺节段模型,通过模型试验确定了纵肋与顶板传统单面焊构造细节和新型双面焊构造细节、纵肋与横隔板传统交叉构造细节和新型交叉构造细节的疲劳开裂模式和实际疲劳抗力;采用扫描电子显微镜(SEM)确定了不同制造工艺条件下纵肋与顶板焊接细节的初始制造缺陷尺度;采用等效结构应力法确定了两类细节各疲劳开裂模式的疲劳抗力。研究结果表明:纵肋与顶板传统单面焊构造细节的疲劳裂纹起裂于顶板焊根并沿顶板厚度方向扩展,其疲劳抗力为95.1~98.7MPa,新型双面焊构造细节的疲劳裂纹起裂于顶板内侧焊趾并沿顶板厚度方向扩展,其疲劳抗力为108.5~123.2MPa,且在相同加载条件下,双面埋弧焊构造细节的疲劳抗力高于双面焊气体保护焊构造细节的疲劳抗力;传统单面焊构造细节焊根的初始制造缺陷尺度显著大于新型双面焊构造细节焊趾的初始制造缺陷尺度,且双面埋弧焊的初始制造缺陷尺度小于双面气体保护焊的初始制造缺陷尺度,初始制造缺陷尺度的差异是不同制造工艺条件下纵肋与顶板焊接细节疲劳抗力存在差异的主要原因;纵肋与横隔板传统交叉构造细节的疲劳裂纹起裂于纵肋腹板焊缝端部焊趾并沿纵肋腹板扩展,新型交叉构造细节的疲劳裂纹起裂于纵肋底板焊缝端部焊趾并沿纵肋底板扩展,两类构造细节的起裂次数基本一致,但新型构造细节的疲劳裂纹扩展速率远低于传统构造细节的疲劳裂纹扩展速率;纵肋与顶板焊接构造细节和纵肋与横隔板交叉构造细节各疲劳开裂模式的实际疲劳抗力基本位于主S-N曲线±2σ之间。  相似文献   

3.
To evaluate the retrofit effect by ICR technique (a new technique developed in recent years), relative tests were carried out with two cracked rib-deck specimens. The fatigue performance, including crack propagation rate, remaining fatigue life, and stress variation was analyzed. An improvement was observed through the test results after the cracked specimen retrofitted. Crack propagation in the treated specimen was restrained by the closed surface and residual compressive stress, and the crack propagation rate was reduced significantly. Stress at the welded joint and the crack tip was redistributed after ICR treatment. An increasing has been found near the weld toe, and reduction is occurred at the crack tip, which matches FEM results. This stress variation might contribute to a delay in subsequent crack propagation.  相似文献   

4.
ICR (Impact Crack-closure Retrofit) treatment was developed for extending fatigue life of cracked steel structures by closing the fatigue crack opening. By applying the ICR treatment to as-welded condition, compressive stress remains at weld toe. Therefore, ICR treatment can be used for the improvement of fatigue strength of welded joint at the same level of the other fatigue strength improved techniques. If a compression overload is subjected after ICR treatment, however, the residual compressive stress at weld toe will shift the tensile stress region. Accordingly, improved fatigue strength of welded joints by ICR treatment will be reduced after the compression overloaded. In order to investigate the effect of the compression overload on fatigue strength improved by ICR treatment, fatigue tests of out-of-plane gusset specimens were carried out. As the results, fatigue strength improved by ICR treatment was hardly reduced under the compression overload condition of nominal stress of ?190 MPa.  相似文献   

5.
Low cycle fatigue strengths of corner welded joints with single bevel groove welding were studied. Low cycle fatigue tests were performed with three types of specimens which have different sizes of weld root face. The test results indicated that the low cycle fatigue strength of the corner welded joints strongly depends on the weld root size. Then, the fatigue strength of the corner joints was evaluated based on the effective notch strain at the weld root tip which was calculated by elasto-plastic finite element analyses. A unique relationship between the effective notch strain and the fatigue life of the joint was observed regardless of the weld root size. Therefore, it was revealed that the effective notch strain approach is applicable to evaluate the low cycle fatigue strength of the corner welded joints.  相似文献   

6.
正交异性钢桥面板的疲劳问题属于包含多疲劳破坏模式的结构体系疲劳问题。基于这一本质特性,以典型的正交异性钢桥面板结构体系为研究对象,由结构体系的主导疲劳破坏模式出发,提出正交异性钢桥面板结构体系疲劳抗力评估的新方法。以纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节为主要研究对象,设计8个足尺节段模型,主要包括传统纵肋与顶板焊接细节、新型镦边纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节,通过模型试验研究了两类重要构造细节的主导疲劳破坏模式和实际疲劳抗力,在此基础上结合切口应力评估方法探讨正交异性钢桥面板构造细节切口应力S-N曲线方程、结构体系的主导疲劳破坏模式等关键问题。研究结果表明:传统纵肋与顶板焊接细节和新型镦边纵肋与顶板焊接细节的主导疲劳破坏模式均为疲劳裂纹萌生于焊根并沿顶板厚度方向扩展,二者的实际疲劳抗力基本相同;纵肋与横隔板交叉构造细节的疲劳破坏模式为焊趾开裂沿纵肋腹板方向扩展;对于研究对象而言,萌生于纵肋与顶板焊接细节焊根并沿顶板厚度方向扩展的疲劳破坏模式为控制结构体系疲劳抗力的主导疲劳破坏模式。  相似文献   

7.
For verifying the applicability of FSM, which is one of the non-destructive inspections based on the potential difference method, for fatigue cracks generated at the invisible location of a steel plate deck with U-rib, a series of experiment and numerical analysis was carried out. In the fatigue experiment, it was confirmed that cracks initiated at the roots of the welds between the deck plate and the U-rib. They propagated concentrically from the roots into the thickness direction of the deck plate. The FC values obtained by the static electric field analysis were agreed with the experimental results. It was indicated that the initiation and propagation of fatigue crack could be detected and monitored by FSM. It was known that the crack initiation at either welds of the left or right sides of the U-rib could be judged by noting the behavior of the FC value of the pair. It was confirmed that the initiation and propagation of fatigue cracks could be detected and monitored with high accuracy by FSM with noting the FC value of the pair possible to be used actually.  相似文献   

8.
M. H. Osman  T. M. Roberts   《Thin》1999,35(2):81
The results of a series of fatigue tests, on slender plate girders subjected to repeated shear loading, are summarised and used to establish a lower bound fatigue strength curve for the welded web boundary, based on geometric or principal surface stress ranges. The propagation of a semi-elliptical surface crack, through the thickness of a plate, is studied using fracture mechanics concepts. An extensive parametric study indicates that the initial crack size and aspect ratio, the geometric stress concentration at the weld toe, and the plate thickness, all have a significant influence on fatigue strength. It is concluded that the fracture mechanics approach requires specification of a number of parameters which are difficult to determine in practice. However, having specified a realistic crack size and aspect ratio and an approximate stress concentration at the weld toe, the solution can be calibrated against available experimental fatigue strength curves.  相似文献   

9.
The materials and details used to construct sacrificial structural steel components must be evaluated for the full range of inelastic demands imposed by extreme loading events. This study characterizes the cyclic response and low-cycle fatigue life of a plate steel material designed to have a relatively low yield stress and various complete joint penetration butt-weld details considered for use in applications where inelastic behavior is expected. Large amplitude cyclic strain tests were performed on the base material and butt-welded specimens. The welded specimens utilized several different weld treatment details designed to mitigate stress concentrations, reduce tensile residual stresses, and improve weld-toe geometry. Uniaxial material models and a low-cycle fatigue model were used to characterize the cyclic stress–strain response and low-cycle fatigue life of the specimens. A linear damage accumulation model was also applied and found to adequately predict the failure of specimens subjected to more arbitrary strain histories. The presence of butt-welds were found to only slightly decrease the low-cycle fatigue life and the various weld treatments were found to have minimal impact.  相似文献   

10.
In this study, we conducted fatigue tests under various stress ratios using cruciform welded joints to confirm the benefit of Ultrasonic Impact Treatment (UIT) for the fatigue strength of welded joints. The material used in the experiment is the JIS SBHS500 high performance steel for bridges. The fatigue life of the peened weld joint by UIT is significantly longer than that of as-welded joints, especially at a low stress ratio. We also estimated the fatigue life of these cruciform joints by crack growth analysis based on the crack opening and closure simulation using the modified strip-yielding model, accounting for the residual stress distribution created by welding or UIT. These estimation results demonstrate good agreement with experimental results obtained at various stress ratios.  相似文献   

11.
《钢结构》2012,(8):73
评估钢结构构件的材质和细部构造在极限荷载作用下的无弹性需求范围。描述了对非弹性有要求部位(屈服应力相对较低的钢板和接头全部焊透的对接焊缝细部构造)的循环响应和低周循环疲劳寿命,对不同的基底材质和对接试样进行大振幅循环应变试验,设计了多种焊接方式来缓和焊接试样的应力集中现象、降低其残余应力、改善焊趾外观。采用单轴材料模型和低周疲劳模型描述试样的循环应力-应变响应和低周循环疲劳寿命。研究表明,线性累积损伤模型也适用于预测不同应变历史下试样的破坏情况。对接焊缝仅略微降低试样的低周循环疲劳寿命,不同的焊接方式对低周循环疲劳寿命的影响最小。  相似文献   

12.
在矩形焊接节点的支撑和弦的结合处通常都是应力集中区域,所以在这些地方疲劳裂纹也更容易产生和扩展。采用边界元素方法模拟T形焊接方管节点的三维裂纹。根据三维分析,基于Paris法则和应力强度等因素,可以构建模型来预测疲劳裂纹的发展。试验结果与预测的裂纹产生以及形状发展都是一致的。基于裂纹扩展的分析,可以预测构件的疲劳程度,通过对比标准的S-N曲线,发现标准S-N曲线是安全的,但略带保守。  相似文献   

13.
Weld seams are critical points for the initiation of fatigue cracks in steel structures subjected to cyclic loads. Semi-elliptical surface cracking at the toes of a fillet weld is not easily found when it is partially through the thickness and subcritical. In this study the acoustic emission (AE) method is used to detect crack propagation in cruciform fillet welded joints that are representative of typical fatigue sensitive details in steel bridge superstructures. The effect of geometry and fatigue load on the AE data is investigated by varying the width of the base plate and the stress ratio. AE data filtering based on load pattern, source location, and waveform feature analysis was implemented to minimize noise-induced AE signals and false indications due to wave reflections. AE time domain features such as amplitude (b-value), counts, signal strength, and absolute energy are employed to study the influence of geometry and fatigue load on the AE data.  相似文献   

14.
正交异性钢桥面板的疲劳问题是目前研究的主要热点之一。该文针对国内钢桥面板顶板竖向加劲肋焊接接头的构造细节,通过振动型疲劳试验机开展了18个试件的弯曲疲劳试验,研究了普通角焊缝和熔透角焊缝在不同加载应力幅下的疲劳性能,分析了焊接接头的应力集中系数,并与有限元分析结果进行了对比,得到了普通角焊缝和熔透角焊缝焊接接头疲劳寿命大小;同时采用BS5400、JSSC、Eurocode 3以及我国钢结构设计规范(GB 50017—2003)规定的S-N曲线对试验结果的疲劳强度进行了评定。研究表明:钢桥面板竖向加劲肋焊接接头熔透角焊缝的疲劳性能总体上优于普通角焊缝,对我国钢桥面板竖向加劲肋焊接接头的开裂前的疲劳性能建议采用BS5400-F2的S-N曲线(35MPa)进行设计和评价;并且两者焊接接头的应力集中系数约为2.4左右,其中熔透角焊缝受到焊接工艺的影响其应力集中系数较大,须在焊接后对其进行焊趾表面处理,以进一步提高疲劳性能。  相似文献   

15.
This study examines the fatigue performance of tubular joints fabricated using a new type of enhanced partial joint penetration weld details under constant-amplitude brace in-plane bending actions. The experimental program includes four cyclic tests on two large-scale X-joints, each with a different surface treatment near the weld toe. The experimental results confirm the satisfactory fatigue performance of the tubular X-joints welded using enhanced partial joint penetration welds in comparison with the S-N curves developed for tubular joints with complete joint penetration welds, and demonstrate the significant improvement on the fatigue life rendered by the weld surface grinding and toe grinding. Root fatigue cracking occurs only in specimens with post-weld toe-grinding treatment which enhances the fatigue life for toe cracking.  相似文献   

16.
针对焊接结构由于初始裂纹的存在而导致裂纹扩展,降低结构承载力,危及结构使用安全的问题,提出了分析有初始裂纹焊接结构的裂纹扩展及其扩展路径的无网格和水平集耦合方法。先建立焊接结构的无网格模型,将节点划分为常规节点、阶跃扩展节点和裂尖扩展节点; 然后采用移动最小二乘法计算近似函数,得到结构的位移场及应力场; 最后采用相互作用积分法求解应力强度因子,将最大周向应力准则作为失效准则计算开裂角,获得焊接结构的裂纹扩展路径。裂纹几何形状采用水平集法描述,裂尖位置采用在裂尖处相互正交的波前水平集函数和裂尖水平集函数定位,裂纹扩展路径跟踪采用水平集更新算法实现。以焊接节点为环状形式截面且存在初始焊接裂纹为研究对象,编制了基于所提方法的裂纹扩展程序。结果表明:采用所提方法分析焊接结构裂纹扩展计算得到的应力场光滑且协调,无需进行后处理,避免了有限元计算裂纹扩展时网格畸变和扭曲,提高了传统无网格法的精度和效率,实现了对裂纹扩展路径的准确跟踪。  相似文献   

17.
为解决钢-超薄UHPC轻型组合桥面板由于UHPC层过薄而难以采用常规剪力连接件的问题,提出一种新型剪力连接件 短钢筋连接件。通过静力推出试验以及疲劳推出试验对短钢筋连接件的抗剪性能进行初步研究。静力推出试验结果表明:①该试验存在焊缝剪断和UHPC局部破坏(短钢筋拔出)两种破坏模式;②短钢筋连接件承载力随着焊缝长度增加而提高;③短钢筋连接件抗剪承载力高于栓钉,略低于钢筋网焊接件。疲劳推出试验结果表明:80MPa剪应力幅下,3个试件疲劳寿命分别为194.2、271.0、195.8万次,去掉最大值,剩余两者平均疲劳寿命为195万次,略低于规范相应的200万次。通过Miner-Palmgren线性累积损伤理论对不同应力幅下的疲劳次数转化,可得200万次疲劳下的剪应力幅为79.6MPa。仿真结果表明:在纵横向间距200mm×200mm布置方式下,两类疲劳细节(连接件位置与钢顶板位置)均能够满足抗剪疲劳设计要求。文章研究成果可为今后实桥应用提供理论依据。  相似文献   

18.
《Stahlbau》2017,86(6):470-482
On the calibration of an advanced support approach for the effective notch stress concept – applying an implicit gradient approach as replacement for the notch rounding in the fatigue life assessment of welded joints. The proof of fatigue life for welded structures according to the notch stress concept requires the calculation of stresses on a geometry with rounded notches in the weld toe and the weld root. The roundings prevent singularities in stress calculation as well as simulate notch sensitivity. In this paper an advanced method for modelling the micro support theory without rounded notches, is presented.  相似文献   

19.
针对Q500qE高性能钢两种典型焊接接头,包括对接焊缝和横向角接焊缝,设计疲劳试件。其中对接焊试件包括两种形式,分别为板厚56mm和8mm的对 接焊试件;横向角接焊缝试件的主板厚56mm、附连件厚20mm。对三组试件进行了有限元分析,掌握了试件的应力分布状况及薄弱环节,验证了试件设计的合 理性。随后针对三组试件展开了疲劳试验,掌握了不同类型焊接接头的破坏位置及破坏形式。根据试验结果拟合出了三组试件的S-N曲线,并与普通钢的疲 劳性能进行比较,表明Q500qE高性能钢的这两种典型焊接接头的疲劳强度略高于普通钢。采用目前规范规定的疲劳强度容许值进行抗疲劳设计是合理可行的,并且具有足够的安全余量。  相似文献   

20.
Fatigue strength evaluation of welded structural details is of practical significance in the design of corrugated steel web girders in highway bridges and industrial structures. In this paper, the fatigue strengths of corrugated steel web girders with several welded structural details and welding methods are analytically examined by fatigue tests of corrugated web beams and small-size welded joints. The stress concentration & distribution characteristics of corrugated web beams were analysed using finite element analysis. The beam test results showed that the structure with scallops or notches in the flange has lower fatigue strength and that with butt joints is prone to suffer from shear crack on the corrugated web. Within the inside range of the scallop, the stress concentration becomes greater with the increase of scallop radius and the tension flange contributes significantly to the bending capacity of corrugated steel web beams. The tests for small-size welded joints indicated their applicability in the analysis and prediction of S-N relationship of the test corrugated steel web beams. Finally, the fatigue crack propagation lives of weld joints were compared with those of test corrugated steel web beams with respect to related design Categories of the AASHTO LRFD Bridge Design Specifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号