首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In order to clarify the formative mechanism of weld penetration in an arc welding process, the development of a numerical model of the process is quite useful for understanding quantitative values of the balances of mass, energy, and force in the welding phenomena because there is still lack of experimentally understanding of the quantitative values of them because of the existence of complicated interactive phenomena between the arc plasma and the weld pool. The present article is focused on a stationary tungsten-inert-gas (TIG) welding process for simplification, but the whole region of TIG arc welding, namely, tungsten cathode, arc plasma, workpiece, and weld pool is treated in a unified numerical model, taking into account the close interaction between the arc plasma and the weld pool. Calculations in a steady state are made for stationary TIG welding in an argon atmosphere at a current of 150 A. The anode is assumed to be a stainless steel, SUS304, with its negative temperature coefficient of surface tension. The two-dimensional distributions of temperature and velocity in the whole region of TIG welding process are predicted. The weld-penetration geometry is also predicted. Furthermore, quantitative values of the energy balance for the various plasma and electrode regions are given. The predicted temperatures of the arc plasma and the tungsten-cathode surface are in good agreement with the experiments. There is also approximate agreement of the weld shape with experiment, although there is a difference between the calculated and experimental volumes of the weld. The calculated convective flow in the weld pool is mainly dominated by the drag force of the cathode jet and the Marangoni force as compared with the other two driving forces, namely, the buoyancy force and the electromagnetic force.  相似文献   

4.
Three-dimensional transient model for arc welding process   总被引:4,自引:0,他引:4  
A direct computer simulation technique, discrete element analysis (DEA), was utilized in the development of a transient multidimensional (2-D and 3-D) mathematical model for investi-gating coupled conduction and convection heat transfer problems associated with stationary and moving arc welding processes. The mathematical formulation considers buoyancy, electro-magnetic, and surface tension driving forces in the solution of the overall heat transfer conditions in the specimen. Furthermore, the formulation of the model allows realistic consideration of the geometrical variations in the workpiece. The model treats the -weld pool surface as a truly deformable free surface, allowing for the prediction of the weld surface deformations such as the “weld crown.≓ A marked element formulation was employed to monitor the transient de-velopment of the weld pool as determined by the latent heat considerations and the calculated velocities in the weld pool. The model was utilized to simulate the heat and fluid flows in the weld pool that occur during stationary (spot) and moving (linear) gas tungsten-arc welding. Also, the present analysis considers a simple rectangular specimen and a geometrically complex specimen to demonstrate the capability of the model to simulate realistic 3-D arc welding prob-lems. The results of the present investigation clearly demonstrate the significant influence of the heat and fluid flows and the specimen geometry on the development of the weld. Comparison of the predicted and the experimentally observed fusion zone and heat-affected zone (HAZ) geometries indicate good agreement.  相似文献   

5.
This article presents the simulation results of a three-dimensional mathematical model using the level set method for laser-keyhole welding. The details of the model are presented in Part I.[4] The effects of keyhole formation on the liquid melt pool and, in turn, on the weld bead are investigated in detail. The influence of process parameters, such as laser power and scanning speed is analyzed. This simulation shows very interesting features in the weld pool, such as intrinsic instability of keyholes, role of recoil pressure, and effect of beam scanning. For verification purposes, visualization experiments have been performed to measure melt-pool geometry and surface velocity. The theoretical predictions show a reasonable agreement with the experimental observations.  相似文献   

6.
Mathematical models capable of accurate prediction of the weld bead and weld pool geometry in gas metal arc (GMA) welding processes would be valuable for rapid development of welding procedures and empirical equations for control algorithms in automated welding applications. This article introduces a three-dimensional (3-D) model for heat and fluid flow in a moving GMA weld pool. The model takes the mass, momentum, and heat transfer of filler metal droplets into consideration and quantitatively analyzes their effects on the weld bead shape and weld pool geometry. The algorithm for calculating the weld reinforcement and weld pool surface deformation has been proved to be effective. Difficulties associated with the irregular shape of the weld bead and weld pool surface have been successfully overcome by adopting a boundary-fitted nonorthogonal coordinate system. It is found that the size and profile of the weld pool are strongly influenced by the volume of molten wire, impact of droplets, and heat content of droplets. Good agreement is demonstrated between predicted weld dimensions and experimently measured ones for bead-on-plate GMA welds on mild steel plate.  相似文献   

7.
Recent computer calculations of heat transfer and fluid flow in welding were intended to provide useful insight about weldment geometry for certain specific welding conditions and alloys joined. However, no generally applicable correlation for the joining of all materials under various welding conditions was sought in previous work. To address this difficulty, computer models of fluid flow and heat transfer were used for the prediction of weld pool geometry in materials with diverse properties, such as gallium, pure aluminum, aluminum alloy 5182, pure iron, steel, titanium, and sodium nitrate under various welding conditions. From the results, a generally applicable relationship was developed between Peclet (Pe) and Marangoni (Ma) numbers. For a given material, Ma and Pe increased with the increase in laser power and decrease in beam radius. For materials with high Prandtl number (Pr), such as sodium nitrate, the Pe and Ma were high, and heat was transported primarily by convection within the weld pool. The resulting welds were shallow and wide. For low Pr number materials, like aluminum, the Pe and Ma were low in most cases, and low Pe made the weld pool deep and narrow. The cross-sectional areas of stationary and low speed welds could be correlated with welding conditions and material properties using dimensionless numbers proposed in this article.  相似文献   

8.
Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high-pressure vessels.In welding of such structures,the selection process parameters has great influence on the weld bead geometry and consequently affects the weld quality.Based on Fuzzy logic and NSGA-II(Non-dominated Sorting Genetic Algorithm-II)algorithm,a new approach was proposed for weld bead geometry prediction and for process parameters optimization.First,different welding parameters including welding voltage,current and speed were set to perform SAW under different conditions on API X65 steel plates.Next,the designed Fuzzy model was used for predicting the weld bead geometry and modeling of the process.The obtained mean percentage error of penetration depth,weld bead width and height from the proposed Fuzzy model was 6.06%,6.40% and 5.82%,respectively.The process parameters were then optimized to achieve the desired values of convexity and penetration indexes simultaneously using NSGA-II algorithm.As a result,a set of optimum vectors(each vector contains current,voltage and speed within their selected experimental domains)was presented for desirable values of convexity and penetration indexes in the ranges of(0.106,0.168)and(0.354,0.561)respectively,which was more applicable in real conditions.  相似文献   

9.
A systematic study was carried out to verify the predictions of a transient multidimensional computational model by comparing the numerical results with the results of an experimental study. The welding parameters were chosen such that the predictions of the model could be correlated with the results of an earlier experimental investigation of the weld pool surface temperatures during spot gas-tungsten-arc (GTA) welding of Type 304 stainless steel (SS). This study represents the first time that such a comprehensive attempt has been made to experimentally verify the predictions of a numerical study of weld pool fluid flow and heat flow. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a truly deformable surface. Theoretical predictions of the weld pool surface temperature distributions, the cross-sectional weld pool size and shape, and the weld pool surface topology were compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement within ±8 pct for the best theoretical models. The predicted surface profiles were found to agree within ±20 pct on dome height and ±8 pct on weld pool diameter for the best theoretical models. The predicted weld cross-sectional profiles were overlaid on macrographs of the actual weld cross sections, and they were found to agree very well for the best theoretical models.  相似文献   

10.
综述了近20年国内、外有关特定焊接条件下,硫含量对熔池中流体流动方式和熔池深度影响方面的研究状况。表面活性元素硫主要是通过改变熔池中流体的流动方式来影响熔池的形状和尺寸。表面张力温度系数是熔池表面温度和活性元素硫含量的函数,表面张力不仅仅与硫含量有关,而且还与熔池表面温度关系密切。硫含量并不是获得最好的焊接熔池深宽比的唯一因素,而是硫含量、焊接电流、电弧移动速度、焊接能量以及能量密度的共同作用影响了熔池中流体的流动方式和熔池深宽比。  相似文献   

11.
搭建了双电弧集成冷丝复合焊接系统,研究了冷丝不同位置对焊接过程的影响机理,其中包括冷丝作用位置对其加热熔化作用及表面成形的影响。实验结果表明:冷丝从两引导焊丝正前方送入时,熔池前端对冷丝的加热熔化作用不充分,冷丝末端会顶触熔池底部,随着冷丝的持续送进和母材的向后移动,某一时刻冷丝回弹,焊丝末端的熔滴弹出落在母材表面形成大颗粒飞溅。当冷丝从侧面送入时,熔池一侧的温度较低,影响熔池金属的流动,导致最终的焊缝成形不对称分布。当冷丝从两引导焊丝正后方送入熔池时,冷丝始终插入熔池中,焊接过程稳定,是理想的冷丝作用位置。此外,随着冷丝送丝速度的增加,两种脉冲电流模式(同相和反相)下,熔敷率均随之增加,且相差不大。同相脉冲电流下电弧对冷丝的加热熔化作用最强烈,反相脉冲电流下次之,直流模式下最弱。   相似文献   

12.
Previously developed techniques by the authors for the microstructural analysis of welds, that included the effects of both the growth crystallography and the weld pool shape, are applied to several cases involving the single-crystal electron beam welding of an Fe-15Ni-15Cr alloy. This evaluation of weld microstructures and associated dendritic growth patterns is based on a three-dimensional (3-D) geometrical analysis. The present study includes examination of the effects observed in overlapping, multipass autogenous welds and butt welds of two single crystals with different orientations, as well as effects due to variations in the welding speed. Weld pool shapes were found to change significantly with increasing welding speed—becoming narrower in cross section but more elongated in the welding direction. Additionally, all electron beam welds showed evidence of a plateau region in the center of the weld pool. The pool shapes, however, were found to be independent of the crystallographic orientation. Therefore, it is possible to extend the pool shape results to crystals welded in any orientation and even to polycrystals. The over-lapping multipass welds showed remarkable reproducibility from pass to pass and duplicated the structural patterns found in single-pass welds. The similarity in dendritic patterns within each pass indicated that the weld pool shapes were identical in all of the passes. The micro-structure of butt welds of two single crystals with different relative orientations showed a remarkable relationship to that associated with each individual crystallographic orientation, and the micro structure was, in effect, simply a composite of two single-pass microstructures. Additional microstructural details were also examined. The tendency toward branching of dendrites was associated with the transition from one dendrite growth orientation to another. It was also found that the nonpenetrating welds exhibited a small protrusion at the bottom of the weld. It is suggested that the modeling of weld pool shapes can be directly evaluated by comparing the predicted dendritic growth patterns based on the modeled shapes with the actual experimentally observed dendritic growth patterns. Formerly Visiting Scientist, Solid State Division, Oak Ridge National Laboratory.  相似文献   

13.
Selective vaporization of volatile elements during laser welding of automotive aluminum alloys affects weld metal composition and properties. An experimental and theoretical study was carried out to seek a quantitative understanding of the influences of various welding variables on vaporization and composition change during conduction mode laser welding of aluminum alloy 5182. A comprehensive model for the calculation of vaporization rate and weld metal composition change was developed based on the principles of transport phenomena, kinetics, and thermodynamics. The calculations showed that the vaporization was concentrated in a small high-temperature region under the laser beam where the local vapor pressure exceeded the ambient pressure. The convective vapor flux driven by the pressure gradient was much higher than the diffusive vapor flux driven by the concentration gradient. The computed weld pool geometry, vaporization rates, and composition changes for different welding conditions agreed well with the corresponding experimental data. The good agreement demonstrates that the comprehensive model can serve as a basis for the quantitative understanding of the influences of various welding variables on the heat transfer, fluid flow, and vaporization occurring during conduction mode laser welding of automotive aluminum alloys.  相似文献   

14.
The composition, size distribution, and number density of oxide inclusions in weld metal are critical factors in determining weldment properties. A computational model has been developed to understand these factors, considering fluid flow and the temperature field in the weld pool during submerged are (SA) welding of low-alloy steels. The equations of conservation of mass, momentum, and energy are solved in three dimensions to calculate the velocity and temperature fields in the weld pool. The loci and corresponding thermal cycles of thousands of oxide inclusions are numerically calculated in the weld pool. The inclusions undergo considerable recirculatory motion and experience strong temperature gyrations. The temperature-time history and the computed time-temperature-transformation (TTT) behavior of inclusions were then used to understand the growth and dissolution of oxide inclusions in the weld pool. The statistically meaningful characteristics of inclusion behavior in the weld pool, such as the residence time, number of temperature peaks, etc., were calculated for several thousand inclusions. The calculated trends agree with experimental observations and indicate that the inclusion formation can be described by combining thermodynamics and kinetics with the fundamentals of transport phenomena.  相似文献   

15.
Systematic tailoring of weld attributes based on scientific principles is an important goal in fabricating reliable welds. What is needed, and is not currently available, is the ability to systematically determine multiple welding-variable sets to achieve a target weld feature such as geometry. Here, we show how the transport phenomena-based models can be completely restructured to achieve this goal. First, the reliability of the heat-transfer and fluid-flow model predictions is increased by optimizing the values of uncertain input variables such as the arc efficiency from a limited volume of experimental data. Next, after the model predictions are made reliable, the numerical heat-transfer and fluid-flow model is coupled with a genetic algorithm (GA) to achieve bidirectionality of the model and to determine multiple pathways to achieve a specified weld attribute such as the weld geometry. The proposed approach is demonstrated in complex gas metal-arc (GMA) fillet welding of low-alloy steel, for which various sets of welding variables are computed to achieve a specified weld geometry. The model predictions are compared with appropriate independent experimental results. The modeling results, apart from providing definitive insight regarding the complex physics of welding, also provide hope that weld attributes can be tailored reliably through multiple routes based on heat-transfer and fluid-flow calculations and evolutionary algorithms.  相似文献   

16.
Reduced-activated ferritic-martensitic steels are considered to be the prime candidate for structural material of the fusion power plant reactor design. Tungsten inert gas (TIG) welding is preferred for welding of those structural materials. However, the depth of penetration achievable during autogenous TIG welding is very limited and hence productivity is poor. Therefore, activated-flux tungsten inert gas (A-TIG) welding, a new variant of TIG welding process has been developed in-house to increase the depth of penetration in single pass welding. In structural materials produced by A-TIG welding process, weld bead width, depth of penetration and HAZ width decide the mechanical properties and in turn the performance of the weld joints during service. To obtain the desired weld bead geometry, HAZ width and make a reliable quality weld, it becomes important to develop predictive tools using soft computing techniques. In this work, adaptive neuro fuzzy inference system is used to develop independent models correlating the welding parameters like current, voltage and torch speed with bead shape parameters like weld bead width, depth of penetration, and HAZ width. During ANFIS modeling, various membership functions were used. Triangular membership function provided the minimum RMS error for prediction and hence, ANFIS model with triangular membership functions were chosen for predicting for weld bead shape parameters as a function of welding process parameters.  相似文献   

17.
TANDEM and GMAW Twin Wire Welding of Q690 Steel Used in Hydraulic Support   总被引:1,自引:0,他引:1  
 Compared with using semi-automatic gas shielded arc welding, using automatic TANDEM twin wire welding and twin wire gas metal arc welding (GMAW) to weld Q690 steel, a low-alloy high-strength structural steel used in the hydraulic support in the fully-mechanized mining face, the welding speed, deposition rate, production environment and welding quality can be obviously improved. Compared with GMAW twin wire welding, a refined microstructure in the weld and heat-affected zone (HAZ), narrow HAZ and improved joint strength were achieved with TANDEM on Q690. Also, due to the push-pull pulsed way in TANDEM welding, the droplet transfer, distribution on heat flow and interaction between two arcs were completely different from those in GMAW twin wire system. The heat input of TANDEM is only about 766% of GMAW, and correspondingly, the welding speed and welding seam can be obviously improved. The complete oscillation caused by TANDEM pulsed current occurred in the welding pool, which refined the grains in the microstructure. The results show that TANDEM twin wire welding is very suitable in the welding of Q690 used in the hydraulic support.  相似文献   

18.
A mathematical model was developed to calculate the transient temperature and velocity distributions in a stationary gas tungsten arc (GTA) weld pool of 304 stainless steels with different sulfur concentrations. A parametric study showed that, depending upon the sulfur concentration, one, two, or three vortexes may be found in the weld pool. These vortexes are caused by the interaction between the electromagnetic force and surface tension, which is a function of temperature and sulfur concentration, and have a significant effect on weld penetration. For given welding conditions, a minimum threshold sulfur concentration is required to create a single, clockwise vortex for deep penetration. When two metals with different sulfur concentrations are welded together, the weld-pool shape is skewed toward the metal with a lower sulfur content. Detailed physical insights on complicated fluid-flow phenomena and the resulting weld-pool penetration were obtained, based on the surface tension-temperature-sulfur concentration relationships.  相似文献   

19.
The grain structure of the weld metal can significantly affect its resistance to solidification cracking during welding and its mechanical properties after welding. An experimental study was conducted to investigate the effect of two basic welding parameters,i.e., the heat input and the welding speed, on the grain structure of aluminum-alloy welds. Gas-tungsten arc welding was performed under various heat inputs and welding speeds, with thermal measurements in the weld pool being carried out during welding and the amounts and nuclei of equiaxed grains in the resultant welds being examined using optical and electron microscopy. The experimentally measuredG/R ratios and the clearly revealed heterogeneous nuclei together demonstrated the thermodynamic effect of the heat input and welding speed on the weld metal grain structure.  相似文献   

20.
This paper evaluates the effect of weld pool evaporation and thermophysical properties on the development of the weld pool. An existing computational model was modified to include vaporization and temperature-dependent thermophysical properties. Transient, convective heat transfer during gas tungsten arc (GTA) welding with and without vaporization effects and variable properties was studied. The present analysis differs from earlier studies that assumed no vaporization and constant values for all of the physical properties throughout the range of temperature of interest. The results indicate that consideration of weld pool vaporization effects and variable physical properties produce significantly different weld model predictions. The calculated results are consistent with previously published experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号