首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an analysis of the energy consumption in a number of optical switch fabric architectures for optical packet-switched applications and compares them to electronic switch fabrics. Optical packet switching does not appear to offer any substantial power consumption advantages over electronic packet switching. Therefore, there is no compelling case for optical packet switching.  相似文献   

2.
This paper presents a hybrid optical/electrical switch for high-capacity future network development. A switch architecture to provide packet switching by solving contention in wavelength and time domains is considered relying on available optical and electrical technology. Physical and logical aspects regarding switch feasibility and management, in relation to the hybrid nature of the switch, are addressed. Scheduling algorithms to support multi-service packet forwarding are compared with optimally exploit optical and electrical subsystems according to traffic characteristics and needs. The main outcomes of the paper suggest criteria to design high-capacity packet switches, based on present-day technology constraints and quality of service requirements, to achieve a fair balance between optical transparency and loss performance.  相似文献   

3.
This article reports a review of the most significant issues related to network architectures and technologies which will enable the realization of future optical Internet networks. The design of such networks has to take into consideration the peculiar characteristics of Internet traffic. Several architectures have been proposed to provide optical networking solutions, based on wavelength-division multiplexing and compatible with the IP world. These architectures are presented briefly, and the main advantages and drawbacks are discussed. Furthermore, advanced network architectures are reported. In particular, two network paradigms are illustrated and discussed: the optical transparent packet network and optical burst switching. Finally, the key technologies are illustrated  相似文献   

4.
Optical packet switching (OPS) is a promising technology to enable next-generation high-speed IP networks. A major issue in OPS is packet contention that occurs when two or more packets attempt to access the same output fiber. In such a case, packets may be dropped, leading to degraded overall switching performance. Several contention resolution techniques have been investigated in the literature including the use of fiber delay lines (FDLs), wavelength converters (WCs), and deflection routing. These solution typically induce extra complexity to the switch design. Accordingly, a key design objective for OPS is to reduce packet loss without increasing switching complexity and delay. In this paper, we investigate the performance of contention resolution in asynchronous OPS architectures with shared FDLs and WCs in terms of packet loss and average switching delay. In particular, an enhanced FDL-based and a novel Hybrid architecture with shared FLDs and WCs are proposed, and their packet scheduling algorithms are presented and evaluated. Extensive simulation studies show that the performance of proposed FDL-based architecture outperforms typical OPS architectures reported in the literature. In addition, it shown that, for the same packet loss ratio, the proposed hybrid architecture can achieve up to 30% reduction in the total number of ports and around 80% reduction in the overall length of fiber as compared to the FDL-based architectures.  相似文献   

5.
We study the fundamental properties of the hybrid combination of optical circuit switching (OCS) and electrical packet switching (EPS) used in an ultra-high-speed local area network (LAN) of the future, where chunks of data such as those containing non-compressed super-high-definition images are frequently transmitted as well as text-based data. We assume the logical topology of the OCS network in such a LAN to be single star in which the end-to-end connections are provided through a non-blocking optical matrix switch located at the center, while a conventional modest-speed EPS-based network such as Ethernet is co-installed to function as another data plane as well as the control plane of the OCS network. We refer to queueing theory in order to understand the fundamental performances issues of OCS and packet switching, and show that the hybrid use of OCS and EPS is very preferable especially when the variance of file size is very large. Simulation results show that the hybrid configuration can significantly outperform a network based on OCS only.  相似文献   

6.
Wavelength switching components for future photonic networks   总被引:2,自引:0,他引:2  
This article provides a review of integrated laser and semiconductor optical amplifier components that have been configured to provide a variety of all-optical functions such as wavelength conversion, routing, signal regeneration, and add-drop multiplexing. The components have been devised so that they can be reliably and simply used within a multiwavelength network. The article introduces the components by outlining the current leading techniques for wavelength conversion using SOAs, namely by way of cross-gain modulation, cross-phase modulation, and four-wave mixing. The integrated SOA distributed feedback laser is then shown to provide excellent regeneration properties, not only overcoming fiber dispersion limitations but also polarization mode dispersion. Finally, the devices are shown to make possible a regenerative wavelength switching node where routing is achieved using a tunable laser to provide regenerative wavelength conversion followed by an arrayed waveguide router. This switch shows promise for use in future photonic packet switching architectures  相似文献   

7.
In order to support the continuous growth of transmission capacity demand, optical packet switching technology is emerging as a strong candidate, promising to allow fast dynamic allocation of wavelength-division multiplexing (channels, combined with a high degree of statistical resource sharing). This work addresses the design of optical switch architectures, based on previous proposals available in the technical literature that use an arrayed waveguide grating (AWG) device to route packets. Since the port number of currently available AWGs is a limiting factor, we propose two new modified structures which better exploit the switching capability of this component in the wavelength domain. Since a limited hardware complexity is a key requirement for all-optical switches, due to the high cost of optical components, these different node configurations are compared in terms of complexity. Traffic performance of these new structures in a full optical packet switching scenario is also examined.  相似文献   

8.
Internally buffered multistage interconnection network architectures have been widely used in parallel computer systems and large switching fabrics. Migration from electrical domain to optical domain has raised the necessity of developing node architectures with optical buffers. Cascaded fibre delay line architectures can be seen as possible realizations of output and shared buffering in a 2 × 2‐switching element. These approaches can be used as buffered node architecture in a Banyan like interconnect. In this paper, we investigate and compare these approaches by using simulation methods. Different performance metrics, such as normalized throughput, average packet delay, packet loss rate and buffer utilization have been used under uniform and non‐uniform traffic models. Results show that the TC‐chain node Banyan network offer an improved normalized throughput and average packet delay performances under both traffic models without disrupting first‐in‐first‐out order of arrivals. The switched delay‐line requires fewer switching elements than TC and TTC architectures but at the cost of high packet delay. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Packet-format and network-traffic transparent optical signal processing   总被引:1,自引:0,他引:1  
In this paper, we demonstrate optical transparency in packet formatting and network traffic offered by all-optical switching devices. Exploiting the bitwise processing capabilities of these "optical transistors," simple optical circuits are designed verifying the independency to packet length, synchronization and packet-to-packet power fluctuations. Devices with these attributes are key elements for achieving network flexibility, fine granularity and efficient bandwidth-on-demand use. To this end, a header/payload separation circuit operating with IP-like packets, a clock and data recovery circuit handling asynchronous packets and a burst-mode receiver for bursty traffic are presented. These network subsystems can find application in future high capacity data-centric photonic packet switched networks.  相似文献   

10.
The paper addresses the topic of long-haul optical networking for the provision of large-bandwidth IP services. A class of optical packet switching architectures is considered which adopts an arrayed wavelength grating device as packet router. The architecture performs slotted packet switching operations and fully exploits the wavelength routing capabilities by allowing multi-wavelength switching. Fiber delay lines are used to perform optical packet buffering, which accomplishes either input queueing or shared queueing. Here a thorough performance evaluation is carried out with different buffering configurations and the effect of various switch parameters on traffic performance is studied.  相似文献   

11.
This letter presents a design proposal of optical packet switch architecture which incorporates fiber Bragg gratings (FBGs) and fiber delay line (FDL) to resolve contention among packets. The main feature of the architecture is the efficient use of FBG to create the buffer and there is no requirement of demux and splitter inside the buffer as in most of the conventional optical packet switch (OPS) architectures. Thus, the buffer is simplified in terms of required number of components used to create buffer. The FBG inside the buffer is a new approach towards buffering structure. Finally, comparative study of the proposed architecture with other architectures is presented.   相似文献   

12.
光交换的时间及空间结构分析   总被引:2,自引:0,他引:2  
拓扑学上的光网络由边(光传输)和节点(光交换)组成。从业务属性出发,基于连接和无连接方式,分析了光交换的时间结构,包括光分组和光突发的时间结构,以及不同动态性的光电路交换的时长及其度量标准,结合实验结果分析了最短光电路交换的时长极限。从多端口和大容量的要求出发,重点讨论了基于微电子机械系统(MEMS)开关、波长选择开关(WSS)和阵列波导光栅(AWG)的三种光交换结构。分析了光交换结构的扩展方法,并讨论了光交换的几个具有挑战性的问题,包括缓存和能耗问题。通过分析,希望从时间和空间两个维度更清晰地认识光交换的本质及其与电交换的异同。  相似文献   

13.
Photonic packet buffers are essential components in photonic packet switching systems. We present a wavelength routing-based photonic packet buffer based on a state-of-the-art arrayed-waveguide grating (AWG) multiplexer. We show how this new packet buffer can be effectively used in the implementation of photonic packet switching systems. We also propose and examine two different photonic packet switch architectures  相似文献   

14.
A new wavelength converter sharing strategy for multifiber optical switches, namely shared-per-wavelength (SPW), which employs wavelength converters with fixed input wavelengths is presented. The aim is to reduce switch costs by using simpler optical components and low complexity space switching matrices. Practical implementations of both the well-known shared-per-node (SPN) and the new SPW schemes are presented, as well as the related scheduling algorithms to manage optical packet forwarding in synchronous scenario. An analytical model to evaluate blocking performance of the SPN architecture is also provided. Results show the accuracy of the model in the range of interest for switch design. The proposed architectures are compared in terms of performance and number of optical components employed. The SPW approach is shown to save a large number of semiconductor optical amplifier gates with respect to the SPN one when the number of fibers per interface is suitably not too high. In these cases, the SPW architecture requires a number of wavelength converters higher than the SPN, but simpler, being their inputs tuned on a single wavelength.  相似文献   

15.
A detailed analytical traffic model for a photonic wavelength division multiplexing (WDM) packet switch block is presented and the requirements to the buffer size is analyzed. Three different switch architectures are considered, each of them representing different complexities in terms of component count and requirements to the components, it is shown that the number of fiber delay-lines, that form the optical buffer, can be substantially reduced by the use of tunable optical wavelength converters, thereby exploiting the wavelength domain to solve contention of optical packets. For a 16×16 switch with four wavelength channels per inlet, all at a load of 0.8, the number of delay-lines is reduced from 47 to 12 by use of tuneable optical wavelength converters. Apart from the number of delay-lines the physical buffer structure is analyzed with special attention to the possibilities offered by optics, i.e., the possibility of several outlets sharing the same physical buffer. For the three architectures presented here, a tradeoff in the buffer architectures is addressed: a buffer physically shared among an outlets requires many wavelengths internally in the switch block, whereas, architectures with buffers dedicated to each outlet require a smaller number of wavelengths  相似文献   

16.
Packet switching over wavelength division multiplexing (WDM) channels is considered with the aim to investigate algorithms for wavelength assignment and to define feasible switch architectures, in the presence of connectionless or connection-oriented transfer modes. In particular, as regards the connection-oriented scenario, mapping of virtual connections onto wavelengths operated by network nodes is considered and procedures are proposed to achieve statistical multiplexing efficiency by dynamic wavelength re-assignment. Switch architectures to support dynamic wavelength encoding and the related performance evaluation are presented and discussed in the paper, evidencing the benefits of packet switching over WDM.  相似文献   

17.
A new class of switching architectures for broadband packet networks, called shuffleout, is described and analyzed. Shuffleout is basically an output-queued architecture with a multistage interconnection network built out of unbuffered b×2b switching elements. Its structure is such that the number of cells that can be concurrently switched from the inlets to each output queue equals the number of stages in the interconnection network. The switching element operates the cell self-routing adopting a shortest path algorithm which, in case of conflict for interstage links, is coupled with deflection routing. The basic version of this architecture is called open-loop shuffleout. This paper describes the closed-loop shuffleout architecture with 2×4 switching elements in which cells that have crossed the whole interconnection network re-enter the network as long as they are not successfully routed to the addressed switch outlet. This result is accomplished by adding to the basic open-loop structure recirculation paths so that each packet can cross several times the interconnection network. Two different solutions are proposed to implement such functionality, the buffered closed-loop shuffleout and the expanded closed-loop shuffleout architecture. Both these solutions aim at reducing the number of stages in the network, compared to the open-loop structure, so as to reduce the complexity of the switch internal wiring and to simplify the output queue interface  相似文献   

18.
This paper compares selected optical packet switching architectures that use the wavelength conversion technique to solve the packet contention problem. The architectures are equipped with shared and limited-range wavelength converters (LRWCs). This paper focuses on two architectures: the shared per node (SPN) and the shared per output fiber (SPOF) architectures, in which the wavelength converters are SPN and output fiber, respectively. Packet loss probability is expressed as a function of the number of wavelength converters used, by means of analytical models validated by simulations. The analytical results show how the use of a reduced number of LRWCs with small range allows the switch to obtain the same performances of an architecture equipped with all of the wavelength converters and using a full wavelength conversion.  相似文献   

19.
The class of switches with shareable parallel memory modules include those switches that use parallel memory modules which are physically separate but logically shared. The two main classes of such architectures namely the Shared Multibuffer (SMB) based switch and the Sliding-Window (SW) based packet switch both deploy shareable parallel memory modules, however they differ in the switching scheme used by them to store incoming packets and transfer packets among different switch ports. In this letter, we investigate and compare the performance of switching schemes deployed by these two classes of switching architectures. We compare throughput and packet loss performance of these two switches under conditions of identical traffic type, switch configuration and memory resource deployed.  相似文献   

20.
Clos lives on in optical packet switching   总被引:2,自引:0,他引:2  
While the technological evolution since C. Clos's seminal article (see Bell Sys. Tech. J., vol.32, p.406-24, 1953) on multistage switch architectures has been huge, his work and ideas still live on. We discuss node architectures for optical packet switching and show how the multistage approach proposed by Clos can be adopted to solve scalability issues and construct switches with large port counts. As in the old days, the driving factors behind the introduction of multistage concepts also include economic issues: compared to a single-stage architecture, the number of components to realize the switching fabric is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号