首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The antipsychotic effects of neuroleptics are believed to be mediated via dopamine D2 receptor blockade; however, the anatomical and pharmacological targets of these drugs remain somewhat controversial. The purpose of this study was to examine the effects of chronic clozapine (CLZ) and haloperidol (HAL) treatments on the densities of DA D1 and D2 receptors. Adult male Sprague-Dawley rats (300-350 g) were treated for 21 days with either HAL (1 mg/kg/day, i.p.), CLZ (20 mg/kg/day, i.p.) or saline. Three days after ending the treatments, the brains were removed and used for biochemical assays of tissue DA and metabolites as well as for receptor studies. DA D1 and D2 receptors were labelled with [3H]SCH23390 and [3H]raclopride, respectively, and measured in the neostriatum by binding studies, and in autoradiograms of forebrain sections by quantitative densitometry. The autoradiographic measurements revealed significant increases in the densities of D2 receptors in nucleus accumbens, in the medio-ventral, latero-dorsal and latero-ventral quadrants of the rostral neostriatum, in caudal neostriatum and in globus pallidus of both HAL-(28-44%) and CLZ-treated (15-85%) animals. The HAL-induced up-regulation of D2 receptors in rostral and caudal neostriatum was homogenous, but CLZ produced a more uneven increase, with the highest absolute densities measured in latero-dorsal neostriatum, as well as with changes in the medio-dorsal rostral neostriatum. For D1 receptors, only CLZ and not HAL, produced significant increases in five regions, namely nucleus accumbens (43%) latero-dorsal rostral neostriatum (16%), caudal neostriatum (30%), globus pallidus (67%) and substantia nigra (12%). The observation that CLZ, contrary to HAL, also has an effect on D1 receptor densities may explain the greater therapeutic and selective efficacy with fewer side-effects of this agent, in comparison to other neuroleptics.  相似文献   

3.
Recent evidence suggests that behavioral supersensitivity to dopamine (DA) agonists observed in chronic neuroleptic-treated animals might be related to changes in synaptic morphology and density. The aim of this study was to test this hypothesis using Western blotting to determine the striatal synaptophysin levels in rats chronically treated with haloperidol followed by sub-acute administration of a DA agonist. Chronic haloperidol treatment (1 mg/kg/day for 21 days) produced an 88% increase in striatal synaptophysin levels and a 73% increase in apomorphine-induced stereotypes. Sub-acute administration of the DA D-1 receptor agonist SKF38393 (10 mg/kg/day for 5 days) or the DA D-2 receptor agonist quinpirole (1 mg/kg/day for 5 days) did not modify the haloperidol-induced increase in striatal synaptophysin levels. However, sub-acute administration of SKF38393 attenuated (62%) haloperidol-induced stereotypies. We conclude that there is no direct relationship between stereotyped behavior and synaptophysin levels indicating that striatal synaptophysin levels are not a good marker of dopaminergic supersensitivity.  相似文献   

4.
The effects of chronic administration of antidepressant drugs (21-22 days s.c. via osmotic mini-pumps) on the behavioural responses of male Sprague-Dawley rats to (-)-quinpirole hydrochloride (0.05 mg kg-1 s.c., 5 min) and (+/-)-SKF 38393 hydrochloride (10 mg kg-1 s.c., 5 min) were investigated. Desipramine hydrochloride (10 mg kg-1 per day), phenelzine sulphate (10 mg kg-1 per day) and clorgyline hydrochloride (1 mg kg-1 per day) attenuated the suppression of locomotor activity induced by quinpirole, a dopamine D2-like receptor agonist, while clomipramine hydrochloride (10 mg kg-1 per day) was without effect. Yawning elicited by quinpirole was absent in phenelzine- and clorgyline-treated rats, but unaffected in rats treated chronically with desipramine and clomipramine. SKF 38393, a dopamine D1-like receptor agonist, significantly increased locomotor activity and time spent grooming in control animals. There were no significant effects of antidepressants on the behavioural responses to SKF 38393.  相似文献   

5.
Using Pavlovian conditioned increases in the amplitude of the acoustic startle reflex as a behavioral indicator of fear motivation, the authors previously showed a resistance to extinction after repeated associations of cocaine with the fear-evoking conditioned stimulus (CS). In Experiment 1, acute administration of cocaine, amphetamine, and the dopamine (DA) D1 receptor agonist SKF 38393 produced a similar fear enhancement. In Experiment 2, a noncontingent injection of cocaine and SKF 38393 provoked a CS potentiation of acoustic startle in fear-extinguished laboratory rats. Potential behavioral, neurochemical, and neuroendocrine explanations for the effects of psychomotor stimulants on conditional fear were discussed. It was suggested that DA agonist drugs increase fear expression possibly by activating mesoamygdaloid associative neurocircuitry involved in excitatory conditioned fear reactions.  相似文献   

6.
Nitric oxide (NO) in brain has been implicated in neuronal regulatory processes and in neuropathologies. Previously we showed that NO modified quinpirole-induced yawning, a behavioral measure of dopamine (DA) D3 receptor activation in rats. The aim of this study was to characterize the effect of nitro-L-arginine methyl ester HCl (NAME) and L-arginine HCl on reactivity of rats to the DA D1 receptor agonist SKF 38393 and DA D1 antagonist SCH 23390 in intact and neonatal 6-hydroxydopamine (6-OHDA)-lesioned rats (134 micrograms of base ICV at 3rd day after birth). L-arginine HCl (300 mg/kg i.p.) increased the oral activity response in 6-OHDA-lesioned rats, like SKF 38393, and induced catalepsy in intact control rats, like SCH 23390. In contrast, NAME had no effect on oral activity or catalepsy, but fully attenuated SKF 38393-induced oral activity. These findings indicate that L-arginine HCl has no apparent effect at the DA D1 receptor, but that NAME is effective in attenuating a DA D1 agonist-induced effect. Consequently NO may be an intracellular second messenger for supersensitized receptors associated with DA D1 agonist-induced oral activity.  相似文献   

7.
1. The authors studied the mechanism of the reverse-tolerance phenomenon caused by long-term administration of central stimulant drugs. Methamphetamine(MAP) was chronically administered to rats, and the reverse-tolerance phenomenon was studied in terms of behavioral changes and changes in monoamine metabolites, the latter being examined by in vivo microdialysis of the extracellular compartment of the corpus-striatum. The authors also studied [3H]SCH23390 and [3H]spiperone binding to striatal membranes after chronic MAP administration. 2. MAP(4 mg/kg) or saline was administered intraperitoneally once daily to male rats. In Groups 1 and 2, 10 and 30 injections of MAP were given, respectively. In Groups 3 and 4, animals received 10 and 30 injections of saline as controls. One week after the final injection, all rats were challenged with 4 mg/kg MAP. 3. Groups 1 and 2 displayed more intense stereotypy than Groups 3 and 4, indicating that behavioral sensitization had been achieved in the former. Dopamine(DA) levels increased rapidly in response to MAP challenge in all groups, with the increases in Groups 1 and 2 being more marked than that in Groups 3 and 4. Group 1 showed greater persistence and a higher rate of DA increase than Group 2. 4. The number of D1 and D2 dopamine receptors did not change after the repeated MAP administration. 5. The rate of increase in DA release induced by MAP was dependent on the duration of repeated administration, and there was no correlation between the intensity of stereotypy and the rate of increase in DA release induced by MAP. These findings suggest that enhancement in DA release is unlikely to be the sole cause of behavioral sensitization.  相似文献   

8.
Previous studies have demonstrated that stimulation of the ventral hippocampal (VH) formation (including the ventral CA1 and subicular areas) elicits increased locomotor activity in rats. The locomotor-activating effects of VH stimulation have been hypothesized to be mediated via hippocampal output to cortical and subcortical dopamine (DA) systems. This study examined whether increased locomotor activity produced by VH stimulation was blocked by pretreatment with a DA receptor antagonist, and whether DA metabolism in subdivisions of the nucleus accumbens, caudate-putamen, and prefrontal cortex was elevated by VH stimulation. Stimulation of the VH (defined as the ventral CA1 and its borders, ventral subiculum, and entorhinal cortex) with the cholinergic agonist carbachol was found to elevate locomotor activity, while pretreatment with the D2 receptor antagonist haloperidol blocked this effect. Stimulation of the VH did not alter DA metabolism (i.e., ratio of the DA metabolites DOPAC or HVA/DA) in any of the brain regions studied. These results indicate that the increased locomotor activity elicited by VH stimulation is not associated with dramatic increases in DA metabolism, but that it does require tonic activation of D2 receptors.  相似文献   

9.
BACKGROUND: We have demonstrated that rats injected with D1 agonists SKF 38393 or A68930 demonstrate repetitive jaw movements (RJM). These agonist-induced movements in rats are similar in their appearance to those induced in rats by long-term treatment with antipsychotic drugs. Over recent years D-1 receptors were discovered which showed linkage not only to c-AMP but also to PI hydrolysis. We examined the effect of EEDQ inactivation of D1 receptors on D-1 mediated PI hydrolysis and RJM. METHODS: Twenty four hours following EEDQ or vehicle administration D-1 agonists or vehicle were administered. The number of RJM episodes was assessed in EEDQ and vehicle treated rats. D-1 receptor density and inositol phosphate formation were determined in the striata. RESULTS: EEDQ administration resulted, 24 hours later, in 70-80% selective depletion of D-1 receptors in the striata but did not modify the rate of RJM induced by D-1 agonists. There was no significant difference in D-1 mediated PI hydrolysis in EEDQ treated rats when compared to vehicle treated group. CONCLUSIONS: The present data support the earlier demonstration of D-1 agonist induced RJM, an effect mediated by a subpopulation of a D-1 receptor subtype and constitute the first behavioral evidence for the existence of a behavioral response mediated by D-1 like dopamine receptors linked to an alternate second messenger system-PI hydrolysis.  相似文献   

10.
Using Pavlovian conditioned increases in the amplitude of the acoustic startle reflex as a behavioral indicator of fear motivation, the authors previously showed a resistance to extinction after repeated associations of cocaine with the fear-evoking conditioned stimulus (CS). In Experiment 1, acute administration of cocaine, amphetamine, and the dopamine (DA) D? receptor agonist SKF 38393 produced a similar fear enhancement. In Experiment 2, a noncontingent injection of cocaine and SKF 38393 provoked a CS potentiation of acoustic startle in fear-extinguished laboratory rats. Potential behavioral, neurochemical, and neuroendocrine explanations for the effects of psychomotor stimulants on conditional fear were discussed. It was suggested that DA agonist drugs increase fear expression possibly by activating mesoamygdaloid associative neurocircuitry involved in excitatory conditioned fear reactions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
The purpose of this study was to determine whether dopamine (DA) systems modulate kappa opioid-mediated ultrasonic vocalizations (USVs), antinociception, and locomotion in young rats. Seventeen-day-old rats were injected with the kappa agonist U-50,488 (0.0-7.5 mg/kg) and saline, the D?-like receptor agonist R(-)-propylnorapomorphine (NPA; 0. 1 or 1.0 mg/kg), the indirect DA agonist cocaine (10 or 20 mg/kg), or the DA antagonist flupenthixol (0.25 or 0.5 mg/kg). USVs and locomotion were measured for 6 min, with antinociception being assessed with a tail-flick test. Kappa receptor stimulation produced analgesia and increased USVs and locomotion. U-50,488-induced analgesia was potentiated by NPA, whereas U-50,488-induced USVs were attenuated by both DA agonists. NPA and flupenthixol depressed U-50,488's locomotor effects. These results show that DA systems interact with kappa opioid systems to modulate USVs, antinociception, and locomotion in preweanling rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Neonatal excitotoxic damage of the ventral hippocampus (VH) is a heuristic model of schizophrenia. We investigated whether: (1) neonatal damage of the medial prefrontal cortex (mPFC) has effects similar to the neonatal VH lesion; and (2) intrinsic mPFC neurons contribute to the abnormal behaviors associated with VH lesions. Neonatal rats were lesioned in the mPFC. In adulthood, they showed attenuated locomotion in response to novelty, amphetamine, and MK-801, and enhanced apomorphine-induced stereotypies as compared to controls. Striatal D1 and D2 receptor mRNAs were unaltered. Another group was lesioned in the VH and additionally in the mPFC in adulthood. Destroying mPFC neurons normalized hyperlocomotion to novelty and amphetamine of the neonatally VH lesioned rats. Thus, neonatal damage of the mPFC does not provide a heuristic model of schizophrenia-like phenomena, in contrast to analogous damage of the VH. However, mPFC intrinsic neurons that have developed in the context of abnormal hippocampal connectivity may be responsible for abnormal behaviors in the neonatally VH lesioned rats.  相似文献   

13.
Female rats show enhanced maternal responsiveness toward their young if they have had maternal experiences before. This kind of maternal experience-based memory is critically dependent on the mesolimbic dopamine (DA) system, especially the nucleus accumbens (NA) shell. However, the relative contributions of the two main DA receptor systems (D? and D?) within the shell have not been delineated. This study investigates the roles of dopamine D? and D? receptors in maternal memory by infusing a selective D? antagonist, SCH-23390; a selective D? antagonist, sulpiride; or a combination D?/D? antagonist, cis-Z-flupenthixol, into the NA shell of postpartum female rats. Sulpiride-infused rats showed a significantly longer latency to exhibit full maternal behavior following a 10-day pup isolation period in comparison to the controls that received a vehicle. Cis-Z-flupenthixol disrupted maternal memory to a greater extent, as rats receiving this showed the longest latencies to express maternal behavior. SCH-23390 infusions had only marginal effects. These findings suggest that both the D? and the D? receptor subtypes play a role in the consolidation of maternal memory and they might do so by mediating the motivational salience of pup stimulation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
We have investigated the response of adenylate cyclase to GTP and to dopamine (DA) in striatal membranes of rats treated for 3 weeks with chlorpromazine or haloperidol, and further measured the level of Gi (an inhibitory GTP-binding protein) or Go (a similar GTP-binding protein of unknown function) in 3 areas (cerebral cortex, striatum and hippocampus) utilizing pertussis toxin-catalyzed ADP ribosylation. In saline-treated control membranes, GTP exerted a biphasic effect on basal and DA-stimulated enzyme activity--peak levels of stimulation by DA plus GTP were observed at 1 microM GTP. Conversely, dopaminergic inhibitory effects at 10-100 microM GTP were completely attenuated in chlorpromazine or haloperidol-treated membranes. D2 inhibition of adenylate cyclase by the selective D2 agonist PPHT was also attenuated due to these neuroleptic treatments, while an increase in D2 receptor binding was observed. The pertussis toxin ADP-ribosylation of G-proteins (Gi/Go) did not differ significantly in any area. This indicates that long-term neuroleptic treatments increased D2 receptor binding, but attenuated D2 inhibition of adenylate cyclase, and exercised no influence on pertussis toxin ADP-ribosylation.  相似文献   

15.
The participation of N-methyl-d-aspartate (NMDA) receptors on dopamine (DA) efflux in the striatum of anaesthetized rats, which had their DA nigrostriatal pathway previously lesioned with different doses of 6-hydroxydopamine (6-OH-DA), was assessed by in vivo microdialysis methodology. In addition, the in vivo basal DA and dihydroxy-phenyl-acetic acid (DOPAC) effluxes and the effect of local K+-depolarization on DA release were also evaluated in the striatum of these 6-OH-DA treated rats. Lesioned rats were divided in three groups corresponding to animals with 25-75%, 75-95% and >95% of striatum tissue DA depletion, respectively. Striatal DA tissue depletion between 25-75% occurred in parallel with a 30% reduction in DA extracellular levels, with a moderate 10% increase in basal fractional DA efflux, and with no statistical changes in the fractional DA efflux induced by NMDA (500 microM) receptor stimulation by reverse dialysis. Rats with higher DA tissue depletion (between 75-95%) exhibited a 60% reduction in DA extracellular levels in the striatum and this reduction occurred in parallel with a modest rise in basal fractional DA efflux, but with a striking decrease in the NMDA-induced fractional DA efflux. In rats with extreme or >95% of striatal DA tissue depletion, basal fractional DA efflux in the striatum increased quite substantially along with a recovery in the ability of NMDA receptor stimulation to induce fractional DA release. The >95% striatal DA-depleted rats also exhibited a significant decrease in tissue and extracellular DOPAC/DA ratio when compared to sham and partially DA-depleted rats. In contrast to the previous results, fractional DA efflux induced by reverse dialysis with K+ (40 mM) remained the same in the striatum of sham and all groups of DA-tissue depleted rats. The present findings suggest the existence of at least three features associated to the regulation of basal and NMDA-induced extracellular levels of DA in the striatum of rats as a function of striatal tissue DA depletion produced by 6-OH-DA. They also support the view that a differential regulation of basal and NMDA-induced DA extracellular levels occur in partial and extreme DA-depleted striatum after 6-OH-DA treatment. Such findings may have implications as regard to the participation of the NMDA receptor in the compensatory mechanisms associated to the progress of Parkinson's disease, as well as in the therapeutic treatment of this neurological disorder.  相似文献   

16.
Correlations between substantia nigra (SN) dopamine (DA) cell activity and striatal extracellular DA were examined using simultaneous extracellular single-unit recordings and in vivo microdialysis performed in drug-naive rats and in rats treated repeatedly with haloperidol (HAL). Intact rats treated with HAL for 21-28 d exhibited significantly fewer active DA cells, indicating the presence of depolarization block (DB) in these cells. However, in rats that received surgical implantation of the microdialysis probe followed by a 24 hr recovery period, HAL-induced DA cell DB was reversed, as evidenced by a number of active DA neurons that was significantly higher than that in HAL-treated intact rats and similar to that of drug-naive rats. In contrast, using a modified probe implantation procedure that did not reverse SN DA neuron DB, we found striatal DA efflux to be significantly lower than in controls and significantly correlated with the reduction in DA neuron spike activity. Furthermore, although basal striatal DA efflux was independent of SN DA cell burst-firing activity in control rats, these variables were significantly correlated in rats with HAL-induced DA cell DB. Therefore, HAL-induced DB of SN DA neurons is disrupted by implantation of a microdialysis probe into the striatum using standard procedures. However, a modified microdialysis method that allowed reinstatement of DA neuron DB revealed that the HAL-induced inactivation of SN DA neurons was associated with significantly lower extracellular DA levels in the striatum. Moreover, the residual extracellular DA maintained in the presence of DB may, in part, depend on the burst-firing pattern of the noninactivated DA neurons in the SN.  相似文献   

17.
This study investigated the putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus accumbens (NAC) and behavioral stimulation induced by systemically administered dizocilpine (MK-801). Microdialysis was utilized in freely moving rats implanted with probes in the VTA and NAC. Dialysates from the NAC were analyzed with high-performance liquid chromatography for DA and its metabolites. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1 mM) or vehicle. Forty min after onset of CNQX or vehicle perfusion of the VTA, MK-801 (0.1 mg/kg) was injected subcutaneously. Subsequently, typical MK-801 induced behaviors were also assessed in the same animals by direct observation. MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC was antagonized by CNQX perfusion of the VTA in a concentration-dependent manner. None of the other rated MK-801 evoked behaviors, e.g. head weaving or sniffing, were affected by CNQX perfusion of the VTA. By itself the CNQX or vehicle perfusion of the VTA alone did not affect DA levels in NAC or any of the rated behaviors. These results indicate that MK-801 induced hyperlocomotion and DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by increased EAA release. Thus, the locomotor stimulation induced by psychotomimetic NMDA receptor antagonists may not only reflect impaired NMDA receptor function, but also enhanced AMPA and/or kainate receptor activation in brain, e.g., in the VTA. In view of their capacity to largely antagonize the behavioral stimulation induced by psychotomimetic drugs, such as MK-801, AMPA, and/or kainate receptor antagonists may possess antipsychotic efficacy.  相似文献   

18.
The contributions of striatal D1 receptors to the expression of sensorimotor behavior are qualitatively different in rats depleted of dopamine (DA) as neonates vs. as adults. In an effort to reveal neuronal mechanisms underlying these behavioral difference we determined the effects of the partial D1 agonist SKF 38393, the muscarinic antagonist scopolamine, and the combination of the two drugs on the induction of c-fos in the striatum and its projection sites, the globus pallidus and substantia nigra. Adult rats, given intracerebroventricular injections of 6-hydroxydopamine (6-OHDA, 50 micrograms/5 microliters/hemisphere) or its vehicle on postnatal day 3, were treated with SKF 38393 (1.5 mg/kg, i.p.), scopolamine (5.0 mg/kg, i.p.) or the combination of the two drugs. There was no significant induction of c-fos in vehicle-treated controls, regardless of drug administration. In DA-depleted rats, scopolamine also did not induce c-fos whereas SKF 38393 produced a significant increases in the number of FOS-positive cells in the dorsal, but not ventral, striatum. The combined administration of scopolamine and SKF 38393 resulted in a potent synergism in the number of FOS-positive cells in DA-depleted rats. These interactions between lesion condition and drugs on c-fos induction were not secondary to differences in drug-induced behavioral activity. Activity levels were no different in vehicle vs. DA-depleted rats following the combined administration of scopolamine + SKF 38393, yet the two groups of rats exhibited marked differences in the density of FOS-positive striatal neurons. The effects of scopolamine and SKF 38393 on c-fos induction in striatum are qualitatively similar to those reported in rats DA-depleted as adults and suggest that, at this single-label level of analysis, the ability of D1 and muscarinic receptors to influence striatal activity does not contribute to the marked age-related differences in the behavioral effects of DA depletions.  相似文献   

19.
AIM: To study the effects of chronic administration of SPD on the density and turnover of striatal D1 and D2 dopamine (DA) receptors. METHODS: Receptor density was monitored by radio-receptor binding assay. The receptor recovery and turnover were studied after irreversible inactivation by N-ethoxycarbonyl-2-ethoxy-1, 2-dihydro-quinoline (EEDQ). RESULTS: Chronic SPD treatment (sc, 20 mg.kg-1.d-1 x 21 d) upregulated both striatal D1 and D2 receptor density. As compared to vehicle-treated rats, SPD increased D1 and D2 receptors by 41.5% and 43.7%, respectively SPD also altered the turnover of both D1 and D2 receptors. The degradation rate constant (k = 0.0082.h-1) and the synthesis rate (r = 2.65 pmol.h-1/g protein) of D2 receptors in SPD-treated rats were significantly increased vs vehicle-treated rats (k = 0.0049.h-1; r = 1.10 pmol.h-1/g protein). The degradation rate constant (k = 0.0059.h-1) and the synthesis rate (r = 3.1 pmol.h-1/g protein) of D1 receptors was also increased in SPD-treated rats vs vehicle-treated rats (k = 0.0048.h-1; r = 1.8 pmol.h-1/g protein), but the alteration of degradation rate constant missed significance (P > 0.05). As a result, receptor recovery following EEDQ was accelerated. The half time for D1 and D2 receptors recovery in SPD group were 117.5 h and 84.5 h, respectively, shorter than 144.4 h and 141.4 h in vehicle-treated rats. CONCLUSION: Chronic SPD treatment upregulated D1 and D2 receptors, and accelerated DA receptor turnover and recovery mainly by increasing receptor synthesis.  相似文献   

20.
Medial prefrontal cortex (mPFC) dopamine (DA) modulates the motor-stimulant response to cocaine. The present study examined the specific mPFC DA receptor subtypes that mediate this behavioral response. Intra-mPFC injection of the DA D?-like receptor agonist quinpirole blocked cocaine-induced motor activity, an effect that was prevented by coadministration of the D2 receptor antagonist sulpiride. Intra-mPFC injection of the selective D? receptor agonist PD 168,077 or the selective D? receptor agonist SKF 81297 did not alter the motor-stimulant response to cocaine. Finally, it was found that an intermediate dose of quinpirole, which only attenuated cocaine-induced motor activity, was not altered by SKF 81297 coadministration, suggesting a lack of synergy between mPFC D?, and D? receptors. These results suggest that D? receptor mechanisms in the mPFC are at least partly responsible for mediating the acute motor-stimulant effects of cocaine. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号