首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The sol–gel method has been used to deposit oxide thin films. In the present study, silica was coated on 316L stainless steel substrate through sol–gel method via dipping process. Silica sol was made in a mixture of methyltriethoxysilane (MTES), tetraethyl orthosilicate (TEOS), pure water, absolute ethanol as solvent, nitric acid, and hydrochloric acid as catalysts. The corrosion resistance of samples was investigated in simulated body fluid by a potentiodynamic test and uniformity of the coating was evaluated by scanning electron microscope. We have assessed the effective parameters, such as wetting agent, number of layers, catalyst and different roughness of sublayers on corrosion properties of samples. The silica coating resulted in improvement of corrosion resistance of 316L stainless steel in body environment, and can be used as a proper coating on orthopaedic implants.  相似文献   

2.
《Intermetallics》2005,13(1):55-60
The corrosion behaviour of two Mg–Al–Er alloys with increasing content of erbium (Mg95Al3Er2 and Mg95Al2Er3) has been evaluated in borate buffer solution and compared with that of the commercial AM60 alloy (Mg–6.0Al–0.13Mn, at%) employed in the automotive industry. Scanning electron microscopy and quantitative electron probe microanalysis were used to characterize the samples, prior and after the electrochemical tests. The experiments were carried out in 0.05 M H3BO3+0.075 M Na2B4O7 solution with pH=8.4. Anodic polarization curves were recorded, potentiostatic current decay transients were obtained at anodic potentials and the polarization resistance was determined. The alloys show similar microstructures characterized by a Mg-based solid solution, surrounded by a very small amount of a secondary phase. The alloys investigated exhibit enhanced corrosion resistance with respect to AM60 alloy. Electrochemical investigations reveal that the surface layers formed on the erbium-containing alloys provide a better protective effectiveness than the magnesium hydroxide or aluminium hydroxide layer formed on AM60 in borate buffer solution. Based on preliminary analysis, the incorporation of erbium in the Mg(OH)2 lattice is believed to be responsible for the improved corrosion behaviour of the Mg–Al–Er alloys.  相似文献   

3.
《Acta Materialia》2001,49(5):811-816
MgAl2O4–ZrO2 nanocomposites were fabricated by conventional sintering of composite powders obtained by sol–gel coating of a submicron spinel powder. In the composite powder the zirconia grains remain narrow sized and completely tetragonal even after being heat treated at temperatures where a free xerogel is completely monoclinic. The sintered material exhibits a dense, fine and highly homogeneous microstructure. The zirconia nanoparticles are located at both inter- and intragranular positions and exhibit heteroepitaxial relationships with the surrounding crystals. Tetragonal zirconia seems to be stabilised by an interface effect. Both the scale of the microstructure and the fraction of intragranular grains were controlled by adjusting the mean grain size of spinel grains before coating and sintering conditions.  相似文献   

4.
This paper reports the synthesis of hydrophobic and antireflective coatings by sol–gel process at room temperature (25 °C), using tetraethylorthosilicate (TEOS) as a precursor and methyltriethoxysilane (MTES), phenyltriethoxysilane (PTES), vinyltriethoxysilane (VTES), and octyltriethoxysilane (OTES) as surface modifying agents. The silica sol was prepared by keeping the molar ratio of TEOS:RTES at 1:1, in acidic conditions with ethanol and 0.1 M HCl. All hybrid systems were enriched with titanium(IV) isopropoxide as the cross-linking agent. It was observed that the obtained silica films become hydrophobic with the introduction of the hydrophobic organic group. The higher value of static water contact angle (107 ± 3°) was obtained for the silica film prepared with TEOS + OTES. Under optimal synthesis condition, we obtained antireflection coatings, exhibiting a low reflection in the visible range.  相似文献   

5.
This paper reports an investigation of microstructural characteristics in electroless Ni–3·9W–13·4P (wt.%) coating by laser nanocrystallisation using a quantitative X–ray diffraction (XRD) method and scanning electron microscopy (SEM) with energy dispersive X–ray spectroscopy (EDX). The corrosion resistance of the coatings before and after laser treatment has been evaluated in 0·5 M H2SO4 solution by potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. The results show that the laser treatment improves the corrosion resistance of the coatings. The corrosion mechanism has been studied and correlated to the microstructural characteristics including volume fraction of INi3P/Itotal, microstrain, and the crystallite size of the Ni and Ni3P phases.  相似文献   

6.
The effect of phase transformation on the corrosion behaviour of Zn–22Al (wt-%) alloys immersed in NaCl solution (3·5 wt-%) at room temperature was investigated. As cast Zn–22Al alloys were isothermally heated at 300 and 250°C (the eutectoid point is 277°C) respectively and then cooled by various rates. Isothermally heated below the eutectoid point, the corrosion resistance of the alloys increased with the decreasing cooling rate. However, when the isothermal heating temperature was above the eutectoid point, the corrosion resistance of Zn–22Al alloys increased with the increasing cooling rate. It can be attributed to the existence of α2 phase, which may lead to smaller potential difference between the microgalvanic cells.  相似文献   

7.
Functionalized graphene-reinforced polyurethane nanocomposite coatings were prepared using the sol–gel method. This method not only provides a “green” strategy for fabricating the graphene-based nanocomposites, but also realizes the covalent functionalization of graphene nanosheets with polymer matrix. The functionalization of graphene with conjugated organosilanes is favorable for improving mechanical and thermal properties of the nanocomposite coatings, which is mainly attributed to the homogeneous dispersion of functionalized graphene in the polymer matrix and strong interfacial interactions between the two components. A 71% increase in tensile strength and a 86% improvement of Young's modulus are observed by the addition of 2.0 wt.% of functionalized graphene. The experimentally determined Young's modulus corresponds well with the theoretical simulation under the hypothesis that the graphene sheets are randomly dispersed in the polymer matrix.  相似文献   

8.
The present work reports a comparative investigation of the electrochemical behaviour of some new types of silica sol–gel coatings with enhanced corrosion resistance deposited on electrolytically or thermally (hot-dip) zinc-coated steel. The coatings were rendered hydrophobic by silylation. Dichlorodimethylsilane or trimethylchlorosilane were used as silylating agents and cetyltrimethylammonium bromide or Pluronic PE 10300, as templating agents. The morpho-structural and optical properties of compact and mesoporous silica coatings were characterised with different methods. The corrosion behaviour of the coatings was evaluated by open circuit potential measurements, Tafel interpretation of the polarisation curves and electrochemical impedance spectroscopy. Both silylating agents improve significantly the corrosion resistance of both porous and compact coatings by reducing the corrosion current density with at least one order of magnitude. The possibility to use the porous structure of the coatings as corrosion inhibitor carriers was explored by loading of mesoporous silica layers with 1H-benzotriazole.  相似文献   

9.
Microalloying is thought to improve the performance of Al–Mg alloys commonly used in transport applications. The effect of Y addition (0–0.4%) on the microstructure, mechanical properties, and corrosion resistance of Al–9.2Mg–0.7Mn alloy is investigated for potential use in engineering applications. The generation of the β-Al3Mg2 phase along the grain boundaries is suppressed in the as-cast alloy due to the formation of the AlMgY ternary phase. The average intergranular corrosion mass loss of the alloy with 0.1% Y addition decreases about 53.1% almost at no expense of mechanical performance in the as-rolled alloy after annealing. Moreover, the alloy with 0.1% Y addition shows the corrosion mass loss about 30.2% lower than the Y-free alloy in the sensitized state. The enhanced corrosion resistance of the alloy can be ascribed to the reduced β-Al3Mg2 precipitation along the grain boundaries associated with Y addition.  相似文献   

10.
Application of a composite coating on AM60B magnesium alloy consisting of cerium–vanadium conversion coating and a hybrid sol–gel layer was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy analyses revealed a cracked nodular structure for the cerium–vanadium conversion coating which was mainly composed of O, Ce, V, and Mg atoms. All the cracks in the conversion coating were completely sealed by a thin, compact and defect-free hybrid sol–gel film. Potentiodynamic polarization and electrochemical impedance spectroscopy experiments in Harrison's solution showed that the cerium–vanadium conversion coating provides minimal protection against corrosion while the composite coating significantly increases the corrosion resistance of the magnesium alloy. Sol–gel film provides protection against corrosion by sealing cracks in the cerium–vanadium conversion coating and acting as a barrier. Scanning electron microscopy analyses after polarization tests confirmed the results obtained by the electrochemical tests.  相似文献   

11.
Bismuth vanadate(BiVO_4) has been investigated intensively and extensively due to its potential applications in the photocatalytic treatment of organiccontaining wastewater.In this study,Mo-BiVO_4 samples were synthesized by a facile sol-gel process.These samples were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),and ultravioletvisible(UV-Vis) diffuse reflectance spectroscopy.It is found that the phase structure of Mo-BiVO_4 photocatalyst is monoclinic scheelite.The photocatalytic activities of the obtained BiVO_4 samples were investigated by means of the decolorization efficiency of methyl orange(MO).The BiVO_4 and Mo-BiVO_4 photocatalysts show the response on the visible light.The doped BiVO_4 photocatalysts show higher decolorization efficiency than that of bare BiVO_4.  相似文献   

12.
Abstract

A study using electrochemical techniques of the susceptibility to corrosion in 0·1M NaCl solution (pH 3) of atomised and deposited Fe–40Al (at.-%) intermetallic material at room temperature is reported. Specimens were heat treated at temperatures of 600 and 900°C for 24 and 72 h. Potentiodynamic polarisation, linear polarisation resistance, potential–time, and electrochemical current noise data were collected. The untreated material displayed higher corrosion resistance than the heat treated material. In the treated material, the corrosion resistance increased with both the time and temperature of heat treatment. Also, untreated material was more susceptible to pitting corrosion than heat treated material. As the temperature or the time of heat treatment was increased, the material became more resistant to pitting. This improvement in resistance to pitting was related to a decrease in surface defects, such as pores and cracks, and an increase in grain size. Thus, heat treatment lowered the number of active sites and helped the material to establish a more protective film.  相似文献   

13.
The objective of this study is to define the corrosion behaviour of different Al–Zn coatings, deposited by magnetron sputtering. The coatings exhibiting the best corrosion resistance are then characterised during long immersion tests in neutral 5 wt.% NaCl solution.The results show that the corrosion behaviour is strongly dependent on the zinc content. The evolution of the degradation mechanism is also related to the microstructure of the alloys. These alloys present very interesting properties for steel protection. Nevertheless, the zinc content has to be well defined in order to avoid a high dissolution of the coating.  相似文献   

14.
T.-H. Yang  J.-M. Wu 《Acta Materialia》2012,60(8):3310-3320
The thermal stability of sol–gel p-type Al–N codoped ZnO films was investigated by high-resolution X-ray photoelectron spectroscopy (XPS). XPS revealed the chemical bonding states and solubility of N-related complex defects in the ZnO films. The concentrations of NO and (NC)O varied with annealing temperature, which led to the change in conduction between p-type and n-type. Variable-temperature Hall-effect measurement showed that NO acted as a shallow acceptor, with its energy level locating at ~114 meV above the valance band maximum. Transmission electron microscopy confirmed the presence of undesired carbon clusters as a graphite state in the ZnO films. In order for Al–N codoped ZnO films to exhibit p-type conductivity, samples could only be annealed in a certain range of temperatures. A hybrid structure with nanostructured ZnO homojunctions was fabricated by spin-coating the p-type Al–N codoped ZnO film on an n-type ZnO nanorod array (ZNA). The hybrid nanostructure was demonstrated to possess rectification behavior characteristic of a p–n junction. The leakage current of the nanostructured ZnO homojunctions was smaller by a factor of 2 than that of the film-based ZnO homojunction at a reverse bias of 5 V. The p-type ZnO film/n-type ZNA structure can be applied as a versatile p–n optoelectronic device.  相似文献   

15.
Recently, there has been an extension of three-dimensional (3D) printing technology of metal materials in the medical field. Additive technology has made it possible to manufacture customized implants. However, 3D printing products often require surface treatment. The possible treatments include acid etching. This study investigated the effect of surface etching on the corrosion resistance of Ti–6Al–4V alloy concerning biological applications. The samples were etched in a mixture of hydrofluoric acid and nitric acid. The corrosion behaviour was described by measuring the time dependence of polarization resistance in a saline solution and surface analysis. The results showed that etching creates a fluoride-rich layer on the surface, which negatively affects the corrosion behaviour of the material for up to 24 hr. Cytocompatibility tests showed that the resulting layer does not affect the biocompatibility of the material.  相似文献   

16.
The protection efficiency of polyindole film on stainless steel was enhanced via titanium dioxide pre-coating. The characterization of coatings was achieved by nuclear magnetic resonance and Fourier-transform infrared spectra. The surface morphology of electrodes was monitored with scanning electron microscope. The corrosion performance was investigated in 3.5% NaCl solution by electrochemical impedance spectroscopy and potentiodynamic measurements. The quantum calculations were employed, and theoretical parameters were determined. Results showed that the correlation between experimental and theoretical parameters. The high protection efficiency was observed against corrosion on the steel surface via forming a protective polyindole top coated titanium dioxide film.  相似文献   

17.
Pure ZnO and Si-doped ZnO thin films were deposited on quartz substrate by using sol-gel spin coating process. X-ray diffraction analysis shows that all the thin films have hexagonal wurtzite structure and preferred c-axis orientation. Si-doped ZnO films show room temperature ferromagnetism (RTFM) and reach the maximum saturation magnetization value of 1.54 kAm-1 at 3% Siconcentration. RTFM of Si-doped ZnO decreases with the increasing annealing temperature because of the formation of SiO 2 . Photoluminescence measurements suggest that the RTFM in Si-doped ZnO can be attributed to the defect complex related to zinc vacancies V Zn and oxygen interstitials Oi .  相似文献   

18.
In this paper, the influence of T6, T74 and RRA aging treatments on microstructure, strength and corrosion behaviour of high Zn content Al–Zn–Mg–Cu alloy was investigated by tensile properties tests, inter-granular corrosion (IGC) tests, exfoliation corrosion (EXCO) tests, polarisation tests, metallographic microscope and transmission electron microscopy (TEM) analysis. The results show that the T74 and RRA temper can increase the size and the distribution discontinuity of the grain boundaries precipitates (GBPs), thus leading to improvement of the corrosion resistance. However, with the coarser matrix precipitates (MPs) relative to T6 treatment, RRA and T74 temper both have a decrease in strength. Besides, all the performances (including mechanical properties and corrosion properties) of the RRA treatment show an intermediate level relative to T6 and T74. Therefore, we can select the appropriate heat treatment process according to the different performance requirements in the industrial production.  相似文献   

19.
This work investigate the wear behavior of Fe–B–Cr coatings on medium carbon steel (EN24) substrate is used for several automotive parts. The high velocity oxy-fuel (HVOF) method was used to create the new crystalline coating of Fe–B–Cr (composition of 59%Fe–26%B–15%Cr in wt %) on a medium carbon steel substrate (AISI 4340). The characteristics of powder and coating are investigated using scanning electron microscopy (SEM) merged with energy dispersive spectroscopy (EDS), optical microscopy (OM) and thermogravmentric analysis (TGA) which were undertaken in the partial characterization of the coating. The phase contents of both powder and coatings were studied by X-ray diffraction (XRD). The coatings consist of melted and un-melted particles identified in the coatings. Moreover, oxides and micro-cracks were observed at the surface. The mechanical property of the coatings was characterized using a microhardness test. The hardness value increased three times more than the substrate. The coated surface showed lower levels of porosity. Moreover, the electrochemical investigation found Fe–B–Cr coating on medium carbon steel. The corrosion test was carried out in an environment with 0.5 M of NaCl, which showed that the corrosion resistance improved by coating.  相似文献   

20.
Fenton's oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, inductively coupled plasma mass spectrometry and electrochemical tests, it is found that the titania film produced by Fenton's oxidation method on NiTi SMA is nanostructured and has a Ni-free zone near its top surface, which results in a notable improvement in corrosion resistance and a remarkable decrease in leaching of harmful Ni ions from NiTi SMA in simulated body fluids. The improvement of effectiveness to corrosion resistance and the reduction in Ni release of NiTi SMA by Fenton's oxidation method are comparable to those by oxygen plasma immersion ion implantation reported earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号