首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温高压实验设备辅以失重法,研究了CO2/H2S腐蚀环境中P110钢的腐蚀性能,用SEM、EDS和XRD等分析了腐蚀产物.分别用电化学充氢及NACE TM0177A法对P110钢进行耐氢损伤试验.结果表明,虽然P110钢在试验环境中的均匀腐蚀速率很小,未发生点蚀,但随着充氢量的增加,强度、伸长率及断面收缩率均降低....  相似文献   

2.
Helium used as a coolant in high-temperature gas-cooled reactors contains gaseous impurities that cause various corrosion effects. To determine the mechanisms of the reactions that occur in this complex gas phase, a theoretical and experimental characterization of the gas is given in part 1. To obtain estimates of the reactions that are possible in principle and to derive the basis for the interpretation of the experimental results, thermodynamic considerations on gas equilibrium and partial equilibria are presented. Because of the extremely low concentrations of the impurities, diffusion processes within the gas may become rate-controlling. This requires a consideration of the flow conditions. The reactions of Pt, Cr, Cr2O3 and Cr3C2 with helium-based atmospheres containing impurities are investigated by means of a mass spectrometric gas analysis with respect to temperature and flow rate. A set of six reactions is derived from the results and discussed in detail. The application of these equations to describe the high-temperature corrosion phenomena of a technical nickel-base alloy is dealt with in part 2.  相似文献   

3.
The effect of element sulphur on the performance of corrosion inhibitor in H2S/CO2 gas field solution was investigated at different velocities. The morphology and composition of corrosion products were characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. The results indicated that L360 QS steel surface suffered from sulphur-induced pitting corrosion at a low velocity due to insufficient sulphur-carrying fluid power. At high flow velocities, the steel surface is likely to be suffered high fluid power which can remove the inhibitor film and corrosion scales by the mechanical erosion effect. The sulphur corrosion mechanism model and the flow-induced corrosion model due to the high wall shear force have been proposed in the study. This work suggested that the gas production rate should be controlled at an acceptable level to guarantee the service safety of pipeline system.  相似文献   

4.
The electrochemical corrosion and stress corrosion cracking (SCC) behaviors of X70 pipeline steel in CO2-containing solution were studied by electrochemical measurements, slow strain rate tensile tests, and surface characterization. The results found that the electrochemical corrosion of X70 steel in aerated, alkaline solution is an activation-controlled process, and a stable passivity cannot develop on steel. Corrosion rate of the steel increases with the CO2 partial pressure. The enhanced anodic dissolution due to the additional cathodic reaction in the presence of CO2, rather than the film-formation reaction, dominates the corrosion process. The mass-transfer step through FeCO3 deposit is the rate-controlling step in corrosion of the steel. The susceptibility of steel to SCC and the fracture brittleness increase with the CO2 partial pressure. The enhanced fracture brittleness is attributed to the evolution and penetration of hydrogen atoms into the steel, contributing to crack propagation. The formed deposit layer is not effective in reducing hydrogen permeation due to the loose, porous structure.  相似文献   

5.
The isothermal corrosion behavior of two stainless steels and a carbon (C) steel in mixtures of NaNO3 and KNO3 was evaluated to determine if the impurities found in commodity grades of alkali nitrates aggravate corrosivity as applicable to an advanced solar thermal energy system. Corrosion tests were conducted for approximately 7000 hours with Types 304 and 316 stainless steels at 570 °C and A36 C steel at 316 °C in seven mixtures of NaNO3 and KNO3 containing variations in impurity concentrations. Corrosion tests were also conducted in a ternary mixture of NaNO3, KNO3, and Ca(NO3)2. Corrosion rates were determined by descaled weight losses while oxidation products were examined by scanning electron microscopy (SEM), electron microprobe analysis (EPMA), and x-ray diffraction (XRD). The nitrate mixtures were periodically analyzed for changes in impurity concentrations and for soluble corrosion products. Results of these tests indicated that the short-term corrosion rates of the stainless steel specimens in many of the mixtures could be described in terms of parabolic kinetics. However, no single rate law could be assigned to the corrosion kinetics resulting from exposure in all of the mixtures. For engineering applications, corrosion rates over the entire exposure period are best described as linear with respect to time. In the binary nitrate mixtures, the annualized rates of metal loss were found to be between 6 and 15 μm/year for the stainless steel specimens at 570 °C depending on the particular mixture. Metal loss for the C steel specimens immersed in these same mixtures at 316 °C extrapolated to approximately 1–4 μm/year. SEM and XRD revealed that the complex, multiphase surface oxides formed on the stainless steel coupons were composed primarily of iron-chromium spinel, iron oxides, and sodium ferrite. Magnetite was the principal corrosion product formed on the carbon steel specimens. Overall, for the typical range of impurities in commercially available nitrate salts, corrosion rates for solar thermal energy applications remained acceptable for all of the materials examined.  相似文献   

6.
Direct observation of corrosion phenomena under special environments is still a challenge. Here, we reported on an in situ method for CO2 corrosion imaging under high pressure. The simultaneously recording of the surface morphology changes and Fe ions release can clearly reveal the detailed process of CO2 corrosion from active dissolution to film deposition and pitting attack. It indicated that the cooperative initiation of corrosion pits was triggered by local environmental variations relating to an initial active dissolution of the steel surface. The result also suggested that stereomicroscope be a suitable method for directly observing corrosion phenomena in high pressure conditions.  相似文献   

7.
The corrosion and corrosion inhibition of mild steel in CO2 saturated solutions were studied under turbulent flow conditions at different pH. Electrochemical measurements using a.c. and d.c. techniques in uninhibited solutions of pH 3.8 indicated the formation of protective surface films (FeCO3) in short immersion times. However, as the exposure time was increased the corrosion rate always increased, an effect attributed to the increased surface area of Fe3C residue from corrosion of the steel. At pH 5.5, the corrosion rate always increased with time, behaviour also associated with the presence of Fe3C surface film. The huge cathodic area of Fe3C seems to have a more important impact on the electrochemical behaviour than the poorly formed FeCO3 products. The effect of Fe3C on inhibition by a quaternary amine inhibitor at pH 3.8 is to increase the corrosion rate as the pre-corrosion time is increased. The Fe3C causes either (a) a cathodic area increase reflected in the corrosion rate increase with time or (b) a potential gradient in the pores of the Fe3C layer that prevents positively charge amine ions from reaching all anodic sites.  相似文献   

8.
加速腐蚀实验研究碳钢的大气腐蚀行为   总被引:2,自引:11,他引:2  
目的快速研究大气环境对钢制输电铁塔腐蚀的影响。方法采用室内加速腐蚀实验,研究碳钢试样在湿度和SO2浓度不同的气氛中的腐蚀行为。结果用极化曲线法测得的金属腐蚀速率与失重法测得的结果具有很高的一致性。相对湿度较低时,改变腐蚀性气体的浓度,对碳钢的腐蚀影响不显著;碳钢在高湿度的含SO2气氛中会发生严重腐蚀。结论降低湿度是防止或减缓碳钢在含SO2气氛中腐蚀的有效途径。  相似文献   

9.
钢材由于具有高强度和耐热性等优异性能而广泛应用于各种零构件,在服役过程中通常面临较为严重的腐蚀问题。CO2 腐蚀是钢材应用领域中较为常见的一种腐蚀失效方式。通常,CO2 对钢的腐蚀行为表现为其溶于水后产生的碳酸腐蚀,但在高温环境中,CO2 可直接使钢表面氧化,同时伴随渗碳现象发生,钢的力学性能与耐腐蚀性能均会因此大幅下降。然而,目前关于钢在高温 CO2 环境中的腐蚀行为研究缺乏相关系统总结。综述有关高温 CO2环境下钢的腐蚀机理,总结高温 CO2环境中温度、压力以及环境中存在的其他杂质气体对腐蚀方式及机理的影响规律,归纳已有的高温 CO2氧化与渗碳腐蚀模型的发展状况,概述目前关于抗高温 CO2 腐蚀的钢材涂层类型及其防护效果。研究表明,由于含 Cr 钢在高温 CO2环境中形成的 Cr2O3 层相较于 Fe 氧化物层更加致密,Cr 元素的存在通常有利于钢的耐腐蚀性能。而环境中,温度与压力的升高以及杂质气体的存在往往会加重钢的 CO2 腐蚀,但这些因素的影响规律会随着钢的种类及服役环境的变化而变化。目前关于钢的 CO2腐蚀模型主要为单一的高温氧化模型或者渗碳模型,可预测氧化物层厚度或渗碳深度,但无法准确预测同时发生氧化和渗碳行为的钢的腐蚀寿命。综述相关研究现状不仅能指出现有研究的不足及未来研究的展开方向,还可为高温环境中钢材抗 CO2腐蚀防护措施的选择及其长周期安全服务寿命评价提供全面理论依据。  相似文献   

10.
Li4SiO4小球与ODS钢的化学相容性对聚变反应器的安全运行具有重要意义。研究了在500、600、700 ℃的氩气环境中保温300 h后ODS钢与小球接触界面组织和成分的变化。结果表明,在600~700 ℃时,Li4SiO4小球与ODS钢的界面发生了严重的元素互扩散和反应。在Li4SiO4小球表面,由于ODS钢中Fe和Cr的扩散,出现了一层薄薄的反应层,这也导致了密度的增加,破碎负荷从51 N (500 ℃)下降到32 N(700 ℃)。XRD图谱显示,ODS钢表面出现了LiCrO2和LiFeO2新相,说明Li4SiO4小球中的Li和O原子可以扩散到ODS中,与Fe、Cr元素在高温下发生反应形成腐蚀层。在700 ℃时,腐蚀层可分为2个氧化层。最外层是LiFeO2和LiCrO2的混合物,下一层主要是LiFeO2。在ODS钢的表面,700 ℃/300 h条件下氧扩散系数为2.2×10-14 cm2/s,这说明ODS钢作为一种包层结构材料,在未来的包层设计中需要一层耐腐蚀涂层。  相似文献   

11.
There is an increasing demand from oil and gas industry to ensure the integrity of assets and the enviroment in the critical conditions found in presalt wells. This study evaluates new formulations of corrosion inhibitors with different types and alkoxylation degrees of nitrogen-based inhibitors to assess corrosion behavior of carbon steel (API X65). For these studies, corrosion rates were determined through measurements of weight loss and linear polarization resistance (LPR). In the case of electrochemical measurements, experiments were carried out in a laminar flow and in a turbulent flow regime. All data were collected in the presence of CO2 and CO2/H2S mixtures. The results revealed that corrosion protection of carbon steel critically depends on the nitrogen-based inhibitor's alkoxylation type and degree as well as the condition to which they are exposed. It was possible to notice that an ethoxylated amine whose inhibition efficiency in the presence of CO2 was about 10%, when exposed to H2S environment at the same temperature showed an efficiency of 86%. It was also observed that the inhibitor with a higher ethoxylation degree presented better efficiencies than the one with a lower degree.  相似文献   

12.
The changes in the corrosion characteristics of stainless steel OC4004 in 0.1 M HNO3 after electrodeposition of thin Al and Ce oxide films on it has been investigated. The Ce2O3–CeO2 layers have been found to possess a pronounced stabilizing effect on the steel passive state and on its corrosion resistance, respectively, whereas the Al2O3 layers do not improve considerably the corrosion behaviour of the SS/Al2O3 system. A twice-lower corrosion current was observed with a ternary SS/Al2O3/Ce2O3–CeO2 system in the passive region, while the zones of potentials, where the steel is in a stable passive state, are not changed. The obtained results permit the assumption that the cerium oxides layer acts as an effective cathode playing a determining role with respect to the improvement of the corrosion behavior of the steel. It has been concluded that when the SS/Al2O3/Ce2O3–CeO2 system is used in media containing nitric acid, the corrosion will proceed at potentials where the passive state of steel would not be disturbed.  相似文献   

13.
Abstract

The corrosion of X70 steel and iron in supercritical CO2/SO2/O2/H2O environment were investigated after a 454 h exposure. Optical microscopy was applied to observe the morphology of etch pits and synthesise the three-dimensional morphology. X-ray diffraction and X-ray photoelectron spectroscopy were employed to detect the composition of product scales. Experimental results verified that the localised corrosion occurred on the X70 steel sample under corrosion product deposits. Ferrous sulphate, sulphur and iron sulphide were detected as the corrosion products.  相似文献   

14.
采用恒载荷拉伸法、腐蚀电化学测试和断口分析技术等,研究了P110钢在不同H2S/CO2含量的NACE-A溶液中的硫化物应力腐蚀(SSCC)行为.结果表明,在加载初期,P110钢的自腐蚀电位Ecorr)急剧下降,至极小值后缓慢升高,达到稳定值后直至断裂,试样断口呈脆性解理状.当通入CO2量达到17%时,P110钢的自腐蚀...  相似文献   

15.
The ‘A line’ of the Sichuan Natural Gas East Transportation in China was used as the subject of the study, and an existing CO2/H2S corrosion model was utilised to predict the uniform corrosion rate. Then, the flow parameters were simulated by computational fluid dynamics based on turbulence theory, and the influence on the corrosion rate of the pipeline was analysed in a detail to more accurately describe the corrosion problems of natural gas pipelines that contain CO2/H2S. After that, an updated CO2/H2S corrosion model under the influence of flow filed was proposed by modifying the existing CO2/H2S corrosion model. The actual condition was calculated by the updated CO2/H2S corrosion model. Results show that flow parameters, namely, velocity, turbulent kinetic energy and phase distribution, affect pipeline corrosion. The flow parameters did not change significantly at the small scale changes in the pipeline (5 and 15°) of a broad and smooth flow channel of the large diameter gas transport pipeline. The shape of corrosion often appears in the form of an elliptical sheet. The corrosion location and the corrosion rate calculated by the updated model are consistent with the wall thickness detection data in the site conditions, which verified that the updated CO2/H2S corrosion model is valid. The updated CO2/H2S corrosion model influenced by the flow field can predict the corrosion distribution and the corrosion rate of the three-dimensional key positions in natural gas pipelines.  相似文献   

16.
The present work primarily investigates the corrosion characterization of the common P110 steel and the anti‐sulfide P110SS steel in CO2‐containing solution with or without hydrosulfuric acid (H2S) at 70 °C. The electrochemical techniques such as potentiodynamic polarization sweep and electrochemical impedance spectroscopy (EIS) were used to disclose the differences of the corrosion mechanisms between both P110 and P110SS steels in CO2‐containing solution with various additions of H2S. The EIS data fitted by ZsimpWin software were analyzed and discussed. The experimental results indicated that H2S could accelerate and also inhibit the corrosion attack according to the changes of corrosive environments.  相似文献   

17.
利用高温高压CO2腐蚀模拟实验以及ESEM, EDS, XPS和SEM等分析技术, 研究了4种不同含Cr量的X65管线钢的腐蚀速率、腐蚀形态和腐蚀产物膜结构特征. 结果表明: 含Cr量高的钢平均腐蚀速率小, 无Cr和含1\%Cr的钢的腐蚀形态为局部腐蚀, 含3%和5%Cr的钢的腐蚀形态为全面腐蚀. 在高温高压CO2腐蚀环境中, 含Cr钢的腐蚀产物膜为FeCO3和Cr(OH)3竞争沉积形成的多层结构, 其中1Cr-X65和3Cr-X65的腐蚀膜具有3层结构, 5Cr-X65的腐蚀膜是双层结构. Cr在腐蚀产物膜层中出现局部富集, 远高于基体中的Cr含量. 高含Cr量使腐蚀产物膜中的Cr(OH)3含量高, 并提高了腐蚀膜的保护性能, 从而引起腐蚀形态发生转变, 腐蚀速率降低. FeCO3和Cr(OH)3共沉积层膜对低铬钢的抗CO2腐蚀性能具有关键的影响.  相似文献   

18.
This work presents the electrochemical results obtained during the study of the corrosion of X52 pipeline steel sample, immersed in brines containing H2S, under turbulent flow conditions. Linear polarisation resistance (LPR), electrochemical impedance spectroscopy (EIS), Electrochemical Noise (EN) and polarisation curves were used in order to determine the effect of turbulent flow upon the corrosion kinetics of the steel. It was found that flow has a considerable influence upon the electrochemical process occurring on the surface of the steel and the corrosion rate is increased.  相似文献   

19.
This study summarizes the chemical effects that can occur during the corrosion process of carbon steel in a CO2-saturated aqueous environment. Particularly, it focuses more on the results that small chemical contaminations in the environment have on the corrosion process. Underground waters present complex chemistry with several different dissolved ions (chlorides, carbonates) even in high concentrations that impact substantially the corrosion rates of these materials. Moreover, gas impurities present in the gas mixture, such as oxygen in carbon capture and storage applications, constitute a supplementary form of significant contamination in the CO2-saturated aqueous environment. In particular, the effect on both electrochemical reactions and corrosion product layer is examined for several chemical species that are commonly present either in the gas mixture or in underground waters.  相似文献   

20.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号