首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particle melting behavior during high-velocity oxygen fuel thermal spraying   总被引:3,自引:0,他引:3  
Particle melting behavior during high-velocity oxygen fuel (HVOF) thermal spraying was investigated using Inconel 625 powders. The powder characteristics and coating properties were investigated using scanning electron microscopy (SEM), x-ray, and microhardness studies. Results indicated that the volume fraction of unmelted particles in the coatings was dependent on the proportion of powder within a specified size range, in these experiments, 30 to 50 μm. This particle size range was primarily determined by the particle temperature, which was measured during spraying. Particle temperature significantly decreased as particle size increased. The microhardness values for the coatings containing unmelted particles were predicted by a simple rule-of-mixtures equation for the case of a low volume fraction of unmelted particles. However, for the condition of high volume fraction of unmelted particles, the measured microhardness values did not compare favorably with the calculated values, probably due to the presence of porosity, which occurred in the form of voids found among unmelted particles. The microstructure and characteristics of the feedstock powder were retained in the corresponding coating under certain spray conditions.  相似文献   

2.
Thermal spray processes are widely used to deposit high-chromium, nickel-chromium coatings to improve high temperature oxidation and corrosion behavior. However, despite the efforts made to improve the present spraying techniques, such as high-velocity oxyfuel (HVOF) and plasma spraying, these coatings may still exhibit certain defects, such as unmelted particles, oxide layers at splat boundaries, porosity, and cracks, which are detrimental to corrosion performance in severe operating conditions. Because of the process temperature, only mechanical bonding is obtained between the coating and substrate. Laser remelting of the sprayed coatings was studied in order to overcome the drawbacks of sprayed structures and to markedly improve the coating properties. The coating material was high-chromium, nickel-chromium alloy, which contains small amounts of molybdenum and boron (53.3% Cr, 42.5% Ni, 2.5% Mo, 0.5% B). The coatings were prepared by HVOF spraying onto mild steel substrates. A high-power, fiber-coupled, continuous-wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF-sprayed coating using different levels of scanning speed and beam width (10 or 20 mm). Coating that was remelted with the highest traverse speed suffered from cracking because of the rapid solidification inherent to laser processing. However, after the appropriate laser parameters were chosen, nonporous, crack-free coatings with minimal dilution between coating and substrate were produced. Laser remelting resulted in the formation of a dense oxide layer on top of the coatings and full homogenization of the sprayed structure. The coatings as sprayed and after laser remelting were characterized by optical and electron microscopy (OM, SEM, respectively). Dilution between coating and substrate was studied with energy dispersive spectrometry (EDS). The properties of the laser-remelted coatings were directly compared with properties of as-sprayed HVOF coatings.  相似文献   

3.
Thermal spray processes are widely used to protect materials and components against wear, corrosion and oxidation. Despite the use of the latest developments of thermal spraying, such as high-velocity oxy-fuel (HVOF) and plasma spraying, these coatings may in certain service conditions show inadequate performance,e.g., due to insufficient bond strength and/or mechanical properties and corrosion resistance inferior to those of corresponding bulk materials. The main cause for a low bond strength in thermalsprayed coatings is the low process temperature, which results only in mechanical bonding. Mechanical and corrosion properties typically inferior to wrought materials are caused by the chemical and structural inhomogeneity of the thermal-sprayed coating material. To overcome the drawbacks of sprayed structures and to markedly improve the coating properties, laser remelting of sprayed coatings was studied in the present work. The coating material was nickel-based superalloy Inconel 625, which contains chromium and molybdenum as the main alloying agents. The coating was prepared by HVOF spraying onto mild steel substrates. High-power continuous wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF sprayed coating using different levels of power and scanning speed. The coatings as-sprayed and after laser remelting were characterized by optical microscopy and scanning electron microscopy (SEM). Laser remelting resulted in homogenization of the sprayed structure. This strongly improved the performance of the laser-remelted coatings in adhesion, wet corrosion, and high-temperature oxidation testing. The properties of the laser-remelted coatings were compared directly with the properties of as-sprayed HVOF coatings and with plasma-transferred arc (PTA) overlay coatings and wrought Inconel 625 alloy.  相似文献   

4.
The aim of the present study is to develop a Fe-based metal matrix composite (MMC) coating using high velocity oxy-fuel spraying (HVOF) process. A ledeburitic high alloyed cold work tool steel (X220CrVMo13-4) and NbC with an average size of 2 µm at different volume fractions have been considered as metal matrix and hard particles respectively. MMC coatings were deposited on austenitic stainless substrates and the coatings were subsequently densified by hot isostatic pressing (HIP) with and without encapsulation. Microstructural analysis of the as-sprayed and HIPed coatings were characterized by SEM and XRD methods. Results showed that the feedstock preparation involving fine NbC was an influencing factor on the coating deposition. A relatively homogeneous dispersion of fine NbC up to 30 vol.% in cold work tool steel matrix was possible using optimized HVOF spraying. Besides, HVOF spraying and its subsequent HIP treatment induced significant microstructural and phase changes in the MMC coatings. The study showed the potential of HVOF spraying for the development of steel based MMC coatings and its subsequent densification can be achieved by HIP process with and without encapsulation.  相似文献   

5.
The microstructure and state of stress present in Fe3Al coatings produced by high velocity oxygen fuel (HVOF) thermal spraying in air at varying particle velocities were characterized using metallography, curvature measurements, x-ray analysis, and microhardness measurements. Sound coatings were produced for all conditions. The microstructures of coatings prepared at higher velocities showed fewer unmelted particles and a greater extent of deformation. Residual stresses in the coatings were compressive and varied from nearly zero at the lowest velocity to approximately −450 MPa at the highest velocity. X-ray line broadening analyses revealed a corresponding increase in the extent of cold work present in the coating, which was also reflected in increased microhardness. Values of mean coefficient of thermal expansion obtained for assprayed coatings using x-ray analysis were significantly lower than those for powder and bulk alloy.  相似文献   

6.
The structure, hardness, and shear adhesion strength have been investigated for Cr3C2-NiCr cermet coatings sprayed onto a mild steel substrate by 200 kW high power plasma spraying (HPS) and high velocity oxy-fuel (HVOF) processes. Amorphous and supersaturated nickel phases form in both as-sprayed coatings. The hardness of the HVOF coating is higher than that of the HPS coating, because the HVOF coating contains more nonmelted Cr3C2 carbide particles. On heat treating at 873 K, the amorphous phase decomposes and the supersaturated nickel phase precipitates Cr3C2 carbides so that the hardness increases in the HPS coating. The hardness measured under a great load exhibits lower values compared with that measured with a small load because of cracks generated from the indentation. The ratio of the hardnesses measured with different loads can be regarded as an index indicating the coating ductility. The ductility of the HVOF coating is higher than that of the HPS coating. Adhesion strength of the HVOF coating was high compared with the HPS coating. The adhesion of the coatings is enhanced by heat treating at 1073 K, and that of the HVOF coating is over 350 MPa.  相似文献   

7.
The microstructure and corrosion properties of nanocrystalline Fe–40Al coatings obtained by thermal spraying of milled powder were investigated. The coatings were sprayed under similar high-velocity oxy-fuel (HVOF) conditions and were varied by the size of the starting feedstock powder. The coatings have complex microstructure consisting essentially of a mixture of well-flattened splats and non-fully melted powder particles within which an equiaxed nanometer-scale structure is retained. Amorphous Al2O3 and nanocrystalline Fe-rich oxides together with Fe3Al (resulting from Al depletion and reaction in the flame) were present at intersplat boundaries. The amount of these phases and porosity, as well as the presence of unmelted powder particles, has been quantified. It is shown that the feedstock powder size has a strong effect on the coating hardness by modifying the amount of hard unmelted powder particles. The electrochemical response of the coatings shows the same general type of active–passive–transpassive behaviour than the microcrystalline bulk Fe–40Al but with poorer corrosion resistance parameters. Analysis of corrosion damage shows a prevalent localized attack at intersplat boundaries or around unmelted powder particles, probably enhanced by galvanic phenomena, that is likely responsible for the poorer corrosion properties of the coatings. To a lesser extent, corrosion takes place by a more global form of attack within splats containing ultrafine grains. If the amount of unmelted powder particles controls the overall hardness of the coatings, it appears to have limited direct effect—if any—on the corrosion behaviour. Thus, the hardness/corrosion balance can be optimized by a good selection of powder size feedstock.  相似文献   

8.
采用超音速火焰喷涂制备超致密NiTi合金涂层,通过后续热处理获得优化相变结构,并通过压痕法分析涂层的形状记忆效应。光学显微镜及扫描电镜对NiTi合金涂层微观结构表征显示,喷涂制备态涂层由内部岛状-链状界面叠片组成,涂层致密孔隙率约为0.82%。X射线衍射分析显示,NiTi涂层制备态为全奥氏体,经时效处理析出Ni4Ti3相。压痕法分析表明,在制备态及时效态涂层中均获得了一定的单程及双程形状记忆效应。X射线物相分析及差示扫描量热仪对比分析揭示,时效析出的第二相粒子显著增加形状记忆效应。  相似文献   

9.
An alloy of Fe-10Cr-13P-7C was thermally sprayed by three different processes: (1) 80 kW low-pressure plasma spraying (LPPS), (2) high-velocity oxyfuel (HVOF) spraying, and (3) 250 kW high-energy plasma spraying (HPS). The as-sprayed coating obtained by the LPPS process was composed of an amorphous phase. In contrast, the as-sprayed coatings obtained by the HVOF and HPS processes were a mixture of amorphous and crystalline phases. The as-sprayed coatings showed a high hardness of 700 DPN. A very fine structure composed of ferrite, carbide, and phosphide was formed, producing a maximum hardness of greater than 1000 DPN in the LPPS coating just after crystallization on tempering. The corrosion re-sistance of the amorphous coating was superior to a SUS316L stainless steel coating in 1N H2SO4 solution and 1N HC1 solution. Furthermore, the amorphous coating underwent neither general nor pitting corro sion in1NUCI solution and 6% FeCl3 6H2O solution containing 0.05N HCl, whereas the SUS316L stain less steel coating was attacked aggressively.  相似文献   

10.
The failure of plasma-sprayed thermal barrier coatings (TBCs) during service or thermal cycle testing usually results from internal cracking in the top coat, erosion and CMAS (calcium-magnesium-alumina-silicate)-induced damage, etc. The microstructure of ceramic coatings affects their durability and other properties of TBCs. In the present study, yttria-stabilized zirconia (YSZ) coatings were deposited by atmospheric plasma spraying (APS) using feedstocks with different particle sizes. In addition, the effect of particle size on damage evolution in the top coat was investigated. It is found that the coatings deposited using coarse particles show the higher thermal cycle life. Crack length grew with increasing numbers of thermal cycles. The faster crack growth rate can be found for the coatings deposited from fine particles. The porosity of the coating made from the coarse powder is larger than the porosity of the coating made from fine powder both in the as-sprayed condition and after thermal cycling. The changes in crack growth rate and the porosity are related to the effect of sintering and stress evolution in coatings during the thermal cyclic tests.  相似文献   

11.
热喷涂 Mo 及 Mo 基复合涂层研究进展   总被引:8,自引:8,他引:0  
杨忠须  刘贵民  闫涛  朱晓莹 《表面技术》2015,44(5):20-30,110
热喷涂Mo及Mo基复合涂层因熔点高、硬度高、耐磨损、耐腐蚀及高温性能稳定等诸多特点,而广泛应用于机械零件生产及表面修复。随着以资源有效利用和机械产品再制造为一体的可持续发展战略不断推进,此类涂层将拥有更为广阔的应用前景。首先介绍了国内外在热喷涂Mo及Mo基复合涂层方面的研究发展和应用现状;随后依据热喷涂技术的发展历程,分别总结论述了不同热喷涂技术,即火焰喷涂(普通火焰喷涂、高速火焰喷涂)、等离子喷涂(普通等离子喷涂、超音速等离子喷涂、微束等离子喷涂、低压等离子喷涂)及电热爆炸喷涂中,Mo及Mo基复合涂层的制备工艺、涂层性能特点及存在的问题;接着指出了热喷涂Mo及Mo基复合涂层在新概念武器、航空航天等高科技领域的应用前景。最后,就进一步拓展Mo及Mo基复合涂层在贫油减摩、高温高速耐磨、高温耐腐蚀及氧化等复杂环境下的应用范围,结合热喷涂技术的研究热点及发展方向,指出了未来热喷涂Mo及Mo基复合涂层在材料组分设计和工艺优化研究中应重点关注的方面。  相似文献   

12.
赵卫民  王勇 《金属学报》2008,44(9):1125-1130
采用超音速火焰喷涂(HVOF)方法在碳钢基体上制备了NiCrBSi喷涂层, 对包覆样 品进行900 ℃保温2 h或10 min热处理, 利用电化学阻抗谱(EIS)研究了涂层在3.5%NaCl 水溶液中的腐蚀失效过程和耐蚀性的变化规律. EIS图谱分析表明, 喷态涂层抗介质渗透能力 差, 腐蚀20 h后介质可渗达碳钢基体;900 ℃, 2 h保温热处理涂层腐蚀 15 h后EIS谱发生明 显变化, 产生局部腐蚀;而900 ℃, 10 min处理涂层为均匀腐蚀, EIS谱形可长时间保持稳定. 利用等效电路拟合, 获取了涂层界面反应阻力(腐蚀抗力)随时间变化的关系, 显示高温短 时(10 min)热处理涂层的界面反应阻力高且稳定, 其耐蚀性和抗介质渗透能力远优于喷态 涂层, 但2 h保温热处理涂层的耐蚀性比喷态涂层的差. 利用组织结构分析解释了热处理影响 涂层腐蚀行为的原因.  相似文献   

13.
FeAl and Mo–Si–B intermetallic coatings for elevated temperature environmental resistance were prepared using high-velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques. For both coating types, the effect of coating parameters (spray particle velocity and temperature) on the microstructure and physical properties of the coatings was assessed. Fe–24Al (wt%) coatings were prepared using HVOF thermal spraying at spray particle velocities varying from 540 to 700 m/s. Mo–13.4Si–2.6B coatings were prepared using APS at particle velocities of 180 and 350 m/s. Residual stresses in the HVOF FeAl coatings were compressive, while stresses in the APS Mo–Si–B coatings were tensile. In both cases, residual stresses became more compressive with increasing spray particle velocity due to increased peening imparted by the spray particles. The hardness and elastic moduli of FeAl coatings also increased with increasing particle velocity. For Mo–Si–B coatings, plasma spraying at 180 m/s resulted in significant oxidation of the spray particles and conversion of the T1 phase into amorphous silica and -Mo. The T1 phase was retained after spraying at 350 m/s.  相似文献   

14.
Free-standing VPS and HVOF CoNiCrAlY coatings were produced. The as-sprayed HVOF coating retained the γ/β microstructure of the feedstock powder, and the VPS coating consisted of a single (γ) phase. A 3-h, 1100 °C heat treatment in vacuum converted the single-phase VPS coating to a two-phase γ/β microstructure and coarsened the γ/β microstructure of the HVOF coating. Oxidation of free-standing as-sprayed and heat-treated coatings of each type was carried out in air at 1100 °C for a duration of 100 h. Parabolic rate constant(s), K p, were determined for free-standing, as-sprayed VPS and HVOF coatings as well as for free-standing coatings that were heat treated prior to oxidation. The observed increase in K p following heat treatment is attributed to a sintering effect eliminating porosity from the coating during heat treatment. The lower K p values determined for both HVOF coatings compared to the VPS coatings is attributed to the presence of oxides in the HVOF coatings, which act as the barrier to diffusion. Oxidation of the as-sprayed coatings produced a dual-layer oxide consisting of an inner α-Al2O3 layer and outer spinel layer. Oxidation of the heat-treated samples resulted in a single-layer oxide, α-Al2O3. The formation of a thin α-Al2O3 layer during heat treatment appeared to prevent nucleation and growth of spinel oxides during subsequent oxidation.  相似文献   

15.
The high velocity oxy-fuel (HVOF) spray process has been primarily used for the application of wear-resistant coatings and, with the introduction of new, more powerful systems, is being increasingly considered for producing corrosion-resistant coatings. In this study, the influence of various spray parameters for the JP-5000 and Diamond Jet (DJ) Hybrid systems on the oxidation of stainless steel 316L is characterized. Experimental results reveal that coating oxygen contents of less than 1 wt.% can be more easily attained with the JP-5000 than the DJ Hybrid systems because of the former’s design. In both cases, however, the low particle temperatures necessary for low oxygen content coatings may impair bond and cohesive strength. Heat treating the coatings after processing reduces hardness, metallurgically enhances bond strength, and enables the spheroidization of oxide layers surrounding unmelted particles. An empirical model describing oxidation in the thermal spray process was expanded to explain the oxidation in the HVOF spraying of stainless steel. It was concluded that for these oxygen-sensitive materials, maintaining a relatively low particle temperature throughout the spray process minimizes oxygen pickup by preventing an autocatalytic oxidation process and particle fragmentation upon impact. For the DJ Hybrid systems, understoichiometric fuel settings are selected, whereas for the JP-5000, oxygen-rich mixtures are preferred.  相似文献   

16.
目的提高爆炸喷涂Fe基非晶涂层的摩擦学性能。方法采用液氮-室温循环处理喷涂粉末,通过爆炸喷涂制备原始粉末和处理粉末对应涂层。利用X射线衍射仪(XRD)检测涂层非晶相,用维氏显微硬度计和球-盘式摩擦试验机分别测试涂层的显微硬度和摩擦学性能,用附带能谱仪的扫描电子显微镜(SEM)表征样品的组织形貌及特征区域的元素含量。结果粉末经低温热循环处理后,仍为非晶态组织,且未发生开裂和破碎现象。与原始粉末制备的涂层相比,低温热循环处理粉末制备的涂层孔隙率由1.0%降低至0.4%;未熔颗粒明显减少,粉末铺展更加充分;显微硬度略有降低(由845.4HV降至813.5HV),但测试误差明显减小,威布尔分布拟合直线斜率由7.1196升高至9.6414;摩擦系数由0.76降低至0.73,磨损更加稳定;磨损率相近,均在10−6次方数量级。结论Fe基非晶粉末经低温热循环处理后,其对应涂层的组织更为均匀致密,显微硬度分布更为均匀,摩擦磨损性能更为稳定,磨损机制由原始粉末制备涂层的疲劳剥层磨损,转变为以氧化磨损和塑性变形主导。  相似文献   

17.
FeMnCrAl/Cr3C2 and FeMnCrAl/Cr3C2-Ni9Al coatings were deposited onto low-carbon steel substrates by high velocity arc spraying. The cross-section and interface microstructures of the coatings were analyzed by optical microscopy (OM). The thermal shock resistance of the coatings was investigated. The characteristics of the coatings after the thermal cycling test were studied by OM, field emission scanning electron microscopy, and energy dispersion spectrometry. The results show that laminated structures with pores, oxide phases, and unmelted particles were found on all the prepared coatings. The FeMnCrAl/Cr3C2 coating with a Ni9Al interlayer registered the best thermal shock resistance, which may be attributed to the interdiffusion between the low-carbon steel substrates and the Ni9Al arc-sprayed coating that converted the mechanical bond between the substrates and the coatings to a metallurgical one.  相似文献   

18.
In this study, high velocity oxy-fuel (HVOF) and vacuum plasma spraying (VPS) coatings were sprayed using a Praxair (CO-210-24) CoNiCrAlY powder. Free-standing coatings underwent vacuum annealing at different temperatures for times of up to 840 h. Feedstock powder, and as-sprayed and annealed coatings, were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). The hardness and Young’s modulus of the as-sprayed and the annealed HVOF and VPS coatings were measured, including the determination of Young’s moduli of the individual phases via nanoindentation and measurements of Young’s moduli of coatings at temperatures up to 500 °C. The Eshelby inclusion model was employed to investigate the effect of microstructure on the coatings’ mechanical properties. The sensitivity of the mechanical properties to microstructural details was confirmed. Young’s modulus was constant up to ~200 °C, and then decreased with increasing measurement temperature. The annealing process increased Young’s modulus because of a combination of decreased porosity and β volume fraction. Oxide stringers in the HVOF coating maintained its higher hardness than the VPS coating, even after annealing.  相似文献   

19.
利用火焰喷涂技术喷涂自制的气雾化合金粉末取代非晶粉末,制备了NiFeBSiNb非晶纳米晶涂层。分别对粉末和涂层的微观组织结构和热力学性能进行了表征。结果表明,自制的合金粉末球形度较好,大多为球形或椭球形;主要为晶体结构,由Nb2Ni21B6晶体相和(Ni,Fe)23B6固溶体组成。而经过火焰喷涂制备的涂层,形成了非晶相和纳米晶相。通过公式计算此合金体系粉末和涂层形成非晶相的临界冷却速率分别为6.01×105K/s和4.56×103K/s,解释了在粉末制备过程中较难形成非晶相而喷涂过程中形成非晶结构比较容易。对涂层的摩擦磨损性能进行了测试,涂层摩擦系数仅为0.17,具有优异的耐磨性能。  相似文献   

20.
Data on the microstructural, physical, and mechanical characteristics of high-velocity oxygen-fuel (HVOF)-sprayed type 316 stainless steel coatings are presented and compared with properties of wrought 316 stainless steel. Coatings were prepared at three different spray particle velocities; coating characteristics are presented as a function of velocity. The coatings had relatively low porosity and oxide contents and were significantly harder than annealed, wrought 316 stainless steel. The hardness difference is primarily attributed to high dislocation densities resulting from peening imparted by high-velocity spray particles. The coating hardness increased with increasing spray particle velocity, reflecting increased peening effects. The elastic modulus of the coatings was essentially identical to wrought material. The mean coefficient of thermal expansion of as-sprayed coatings was lower than wrought material, but the expansion of annealed coatings matched the wrought behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号