首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comprehensive kinetic model for oxidative coupling of methane (OCM) on Mn/Na2WO4/SiO2 catalyst was developed based on a microcatalytic reactor data. The methane conversion and ethylene, ethane, carbon monoxide and carbon dioxide selectivities were obtained in a wide range of operating conditions including 750 < < 875 °C, 4 < CH4/O2 < 7.5 and space time between 30 and 160 kg · s/m3 at = 657 mmHg. The reaction networks of five kinetic models with appropriate rate equation type were compared together. The kinetics rates parameters of each reaction network were estimated using genetic algorithm optimization method. After comparing the reaction networks, the reaction network presented by Stansch et al. was found to best represent the OCM reaction network and was further used in this work. This kinetic network considers both catalytic and gas-phase as well as primary and consecutive reaction steps to predict the performance of the OCM. Comparing the experimental and predicted data showed that presented model has a reasonable fit between the experimental data and the predicted values with average absolute relative deviation of ± 9.1%.  相似文献   

2.
3.
Methane oxidative coupling (MOC) was studied over Na2WO4/SiO2. The effect of Na2WO4 loading and reaction conditions on the catalytic behaviour was investigated. XRD, SEM, LRS and XPS have been used to study the catalyst morphology, Na2WO4 dispersity and surface oxygen species. These results were correlated with the catalytic activity and selectivity.  相似文献   

4.
The reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (CRPOM) was tested over Ni/SiO2 catalysts which were prepared via incipient-wetness impregnation using precursors of nickel citrate and nickel nitrate. The catalysts were characterized by X-ray powder diffraction analysis (XRD) and H2-temperature-programmed reduction (H2-TPR) techniques. It was shown that the nickel citrate precursor strengthened interaction between NiO and support to form nickel silicate like species which could be reduced to produce small crystallites of metallic nickel at high temperatures. The Ni/SiO2 prepared with the nickel citrate precursor exhibited good catalytic performances for its highly dispersed metallic nickel derived from the nickel silicate species.  相似文献   

5.
Na2WO4/Co–Mn/SiO2 catalyst was prepared and used for the simultaneous production of ethylene and syngas from CH4. A CH4 conversion of 38% and a yield of 21% for (C2H4 + CO), with a C2H4/CO/H2 ratio of 1/0.7/0.7 were obtained under the optimized conditions.  相似文献   

6.
A new route of methane utilization is presented, in which methane is converted to H2, CO and C2H4 simultaneously with equal mole ratio, in order that the produced mixture could be used in the synthesis of propanal via hydroformylation. Kinetically controlled free radical gas phase methane oxidation was combined with its catalytic oxidative coupling over Mn/Na2WO4/SiO2 to concomitantly acquire ethylene and syngas with close concentration. Under the optimal reaction condition, a mole ratio of CO:H2:C2H4=1.0:1:0.9 was obtained with a yield of 11.6% and a selectivity of 68% to the target products based on C, while the selectivity to CO2 is as low as 18.1%.  相似文献   

7.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed.  相似文献   

8.
本研究以硝酸镍为镍源,酸/碱性硅溶胶为硅源,采用共沉淀法制备了Ni/SiO2催化剂。采用固定床反应器,评价Ni/SiO2催化剂对于2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)的反应性能。通过XRD、N2等温吸附-脱附、H2-TPR、NH3-TPD、XPS、FT-IR和TEM等方法对催化剂结构进行表征,研究硅溶胶的酸碱性对Ni/SiO2催化剂结构及性能的影响。结果表明:以酸性硅溶胶为硅源制备的Ni/SiO2催化剂弱酸中心酸量多并且存在中强酸性中心,比表面积高,平均孔径大,因而该催化剂活性和2-MTHF的选择性高。Ni/SiO2催化剂稳定性良好,在90 ℃,2 MPa,WHSV=4.4 h?1条件下连续反应200 h,2-MTHF的收率均保持在95.7%。关键词:2-甲基四氢呋喃;2-甲基呋喃;共沉淀法;Ni/SiO2;酸碱性  相似文献   

9.
The nano-CeO2/ZnO catalysts were prepared using a novel combination of homogeneous precipitation with micro-emulsion for oxidative coupling of methane with CO2 as an oxidant. The prepared catalysts were compared with those prepared using the conventional impregnation. The catalysts prepared in two ways were characterized with FTIR, TEM, XRD and CO2-TPD. The effects of the reaction temperature, the amount of ZnO doped in the catalysts and the average size were investigated. The experimental investigation demonstrated that methane conversion over the nano-CeO2/ZnO catalysts prepared by the combined technique was higher than that obtained over catalysts prepared by the conventional impregnation. A better low-temperature activity has also been achieved over the nanocatalysts. There was no clear trend between the average size of nano-CeO2/ZnO catalysts and their catalytic performance but methane conversion increased with increasing fractal dimension of nanocatalysts.  相似文献   

10.
Titania-modified silicas with different weight% of TiO2 were prepared by sol–gel method and used as supports for Pd (1 wt%) catalysts. The obtained materials were tested in the oxidation of methane under lean conditions in absence and in presence of SO2. Test reactions were consecutively performed in order to evaluate the thermal stability and poisoning reversibility. Increasing amounts of TiO2 improved the catalytic activity, with an optimum of the performance for 10 wt% TiO2 loading. Moreover, the titania-containing catalysts exhibited a superior tolerance towards SO2 by either adding it to the reactants or feeding it as a pure pretreatment atmosphere at 350 °C. Catalysts were characterized by XPS, XRD, FT-IR and BET measurements. According to the structural and surface analyses, the mixed oxides contained Si–O–Ti linkages which were interpreted as being responsible for the enhanced intrinsic activity of supported PdO with respect to PdO on either pure SiO2 or pure TiO2. Moreover, the preferential interaction of the sulfur molecule with TiO2 and the easy SOx desorption from high surface area silica were the determining factors for the superior SO2 tolerance of the TiO2-doped catalysts.  相似文献   

11.
Ni/Al2O3 aerogel catalysts were synthesized by a sol-gel method combined with a supercritical drying route. The catalytic performances of the catalysts in methane reforming with CO2 were investigated in a quartz micro-reactor. The results indicated that the aerogel catalyst showed higher specific surface area and higher dispersivity of nickel species than those of impregnation catalyst. The excellent catalytic performances and stabilities were achieved over the aerogel catalysts in the fluidized bed reactor. Comprehensive characterization with TG, XRD and FESEM revealed that the aerogel catalyst in the fluidized bed had much lower carbon deposition than that in the fixed bed. The fluidization of the aerogel catalyst greatly improved the contact efficiency of gas-solid phase, which accelerated the gasification of the deposited carbon. In contrast, the deactivation of the aerogel catalyst was caused by the carbon deposition due to the catalyst without moving in the fixed bed. Moreover, decreasing activity of the impregnation catalyst in the fluidized bed resulted from the poor fluidization state of catalyst particles and low effective active sites on surface of catalyst.  相似文献   

12.
Selective synthesis of gasoline-range hydrocarbons (C5-C12) was investigated in a fixed-bed micro reactor using two series of CO2-containing syngas with various mole CO2/(CO + CO2) and H2/(CO + CO2) ratios, where Fischer-Tropsch synthesis(FTS) and in situ hydrocracking/hydroisomerization were performed over bifunctional Co/SiO2/HZSM-5 catalyst. CO2 was converted at 0.15-0.55 of CO2/(CO + CO2) ratio under H2-rich condition (H2/(CO + CO2) = 2.0), highest conversion of 20.3% at 0.42. Further increasing CO2 content decreased CO2 conversion and quite amount of CO2 acted as diluting component. For the syngas with low H2 content or H2/(CO + CO2) ratio(< 1.85, H2/CO = 2.0), the competitive adsorption of CO, H2 and CO2 resulted in low CO, CO2 and total carbon conversion, which was 57.9%, 12.7% and 31.4% respectively at 0.74 of H2/(CO + CO2) ratio(H2/CO/CO2/N2 = 40.8/20.4/34.8/4). FTS results indicated that high H2 content and proper H2/(CO + CO2) ratio were favorable for the conversion of CO2-containing syngas. More than 45% selectivity to gasoline-range hydrocarbons including isoparaffins was obtained under the two series of syngas. It was also tested that the catalytic activity of Co/SiO2/HZSM-5 kept stable under CO2-containing syngas(< 7.5%). And the quick catalytic deactivation under high CO2 containing syngas(H2/CO/CO2/N2 = 45.3/23.2/27.1/3.06) was due to carbon deposition and pore blockage by heavy hydrocarbon, tested by thermal gravimetry, N2 physisorption and scanning electron microscopy(SEM).  相似文献   

13.
A silica-supported Ag system made by the incipient wetness impregnation method was investigated in the reaction of heterogeneous catalytic decomposition of ozone. It was established that the catalytic ozone decomposition on Ag/SiO2 proceeded in the temperature interval −40 °C to 25 °C as a first order reaction with activation energy of 65 kJ/mol (pre-exponential factor 5.0 × 1014 s−1). Based on the results from the instrumental methods (SEM, XRD, XPS, EPR, TPD) it can be concluded that in presence of ozone the silver is oxidized to a complicated mixture of Ag2O3 and AgO. Due to the high activity and stability of the Ag/SiO2 catalyst, it is promising for neutralization of waste gases containing ozone.  相似文献   

14.
CO2 reforming of CH4 over stabilized mesoporous Ni-CaO-ZrO2 composites   总被引:1,自引:0,他引:1  
Shuigang Liu  Lianxiu Guan  Junping Li  Wei Wei  Yuhan Sun 《Fuel》2008,87(12):2477-2481
Mesoporous Ni-CaO-ZrO2 nanocomposites with high thermal stability were designed and employed in the CO2/CH4 reforming. The nanocomposites with appropriate Ni/Ca/Zr molar ratios exhibited excellent activity and prominent coking resistivity. The Ni crystallites were effectively controlled under the critical size for coke formation in such nanocomposites. It was found that low Ni content resulted in high metal dispersion and good catalytic performance. Moreover, the basicity of the matrices improved the chemisorption of CO2 and promoted the gasification of deposited coke on the catalyst.  相似文献   

15.
Autothermal reforming of methane (ATR) was studied over Rh catalysts supported on Ce0.5Zr0.5O2 solid solution, which were synthesized by four different routes, including reverse micro-emulsion (ME), co-precipitation (CP), urea-combustion (UC) and sol-gel (SG) method. The textural and structural properties of the as-prepared solid solutions were carefully examined by means of BET, TEM, XRD and Raman techniques. Results showed that the ME sample exhibited a single cubic phase, whereas tetragonal or mixed phases such as cubic CeO2-rich and tetragonal ZrO2-rich phases, were found in the case of CP, UC and SG. Vegard's rule revealed that the homogeneity of these as-prepared solid solutions followed the order of ME > CP > UC > SG. TPR and CO-pulse experiments were adopted to evaluate the reducibility and the oxygen storage capacity (OSC) of the catalysts. It was found that the more homogenous the solid solution is, the more reducibility it is, i.e. both the reducibility and OSC followed the same order as that of homogeneity.Rh/ME showed the highest activity and H2/CO ratio and such performance was maintained without significant loss during 10 h experiment. On the contrary, the other three catalysts having mixed phases showed remarkably deactivation in terms of H2/CO due to the loss of BET area. To elucidate the resistance toward carbon formation of these catalysts, methane decomposition experiments and following temperature-programmed-oxidation (TPO) were studied. As expected, the resistance toward carbon formation could be enhanced by the improved OSC of the catalyst.  相似文献   

16.
Porous 7Na2O-23B2O3-70SiO2 glass was successfully fabricated by acid leaching treatment and phase-separation. The 2 mol/l hydrochloric acid (HCl) solution treatment was used for 24 h. Thermal analysis and X-ray diffraction were used to identify the temperature range of heat-treatment. The average pore size and the pore volume were investigated by a nitrogen adsorption instrument, and SEM was used to characterize the appearance of the porous glass. The results show that the average size of pores changed from 3.75 nm to 3.03 nm when heat treated at 640-680 °C for 6 h. In addition, when heat treated at 640 °C for 6-24 h, the pore size fell from 3.75 nm to 3.66 nm. The surface area and pore volume become larger with the increase in both temperature and heat treatment time.  相似文献   

17.
A NiCoP/SiO2 catalyst was fabricated by solid phase reaction of nickel chloride (NiCl2) and cobalt chloride (CoCl2) with potassium dihydrogen phosphate (KH2PO3). The structure and properties of NiCoP/SiO2 were characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis and Brunauer–Emmett–Teller in detail. A mechanism was postulated based on the results of thermal gravimetric analysis. The as-prepared NiCoP/SiO2 catalyst had excellent hydrodesulfurization activity, as indicated by using dibenzothiophene as the reactant. Hydrodesulfurization occurred sequentially following hydrogenation of dibenzothiophene and desulfurization in the presence of NiCoP/SiO2.  相似文献   

18.
Three-dimensional flower-like Bi2WO6 microspheres with the diameter of about 4 μm were prepared by a facile hydrothermal method using bismuth nitrate pentahydrate and sodium tungstate dihydrate as raw materials. A novel Ag-modified Bi2WO6 was synthesized through a simple and practical photoreduction process. The UV–vis diffuse reflectance spectra indicate that the Ag/Bi2WO6 samples have a significantly enhanced optical absorption in the visible light region than that of pure Bi2WO6 microspheres due to the surface plasmon resonance (SPR) of Ag nanoparticles on the surface of pure Bi2WO6. The photocatalytic activities of the as-prepared samples were evaluated by the decolorization of rhodamine B under simulated sun-light irradiation. The results reveal that the photocatalytic activities of the Ag/Bi2WO6 samples increase first and then decrease with increasing amount of loading Ag and the 1.0 wt% Ag-loaded Bi2WO6 sample exhibits the best photocatalytic activity compared with the other samples. The enhanced photocatalytic activity could be attributed to the synergistic effect of the strong SPR and the effective separation of photogenerated electrons and holes caused by Ag nanoparticles.  相似文献   

19.
Novel hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays were fabricated on silicon substrates by a one-step thermal evaporation of CdS powder. The as-grown products were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Studies reveal that a typical hierarchical Cd4SiS6/SiO2 heterostructure nanowire is composed of a single crystalline Cd4SiS6 nanowire core sheathed with amorphous SiO2 sheath. Furthermore, secondary nanostructures of SiO2 nanowires are highly dense grown on the primary Cd4SiS6 core-SiO2 sheath nanowires and formed hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays which stand vertically on silicon substrates. The possible growth mechanism of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays is proposed. The optical properties of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays are investigated using Raman and Photoluminescence spectroscopy.  相似文献   

20.
V.R. Choudhary  K.C. Mondal  T.V. Choudhary 《Fuel》2006,85(17-18):2484-2488
The oxy-CO2 methane reforming reaction (OCRM) has been investigated over CoOx supported on a MgO precoated highly macroporous silica–alumina catalyst carrier (SA-5205) at different reaction temperatures (700–900 °C), O2/CH4 ratios (0.3–0.45) and space velocites (20,000–100,000 cc/g/h). The reaction temperature had a profound influence on the OCRM performance over the CoO/MgO/SA-5205 catalyst; the methane conversion, CO2 conversion and H2 selectivity increased while the H2/CO ratio decreased markedly with increasing reaction temperature. While the O2/CH4 ratio did not strongly affect the CH4 and CO2 conversion and H2 selectivity, it had an intense influence on the H2/CO ratio. The CH4 and CO2 conversion and the H2 selectivity decreased while the H2/CO increased with increasing space velocity. The O2/CH4 ratio and the reaction temperature could be used to manipulate the heat of the reaction for the OCRM process. Depending on the O2/CH4 ratio and temperature the OCRM process could be operated in a mildly exothermic, thermal neutral or mildly endothermic mode. The OCRM reaction became almost thermoneutral at an OCRM reaction temperature of 850 °C, O2/CH4 ratio of 0.45 and space velocity of 46,000 cc/g/h. The CH4 conversion and H2 selectivity over the CoO/MgO/SA-5205 catalyst corresponding to thermoneutral conditions were excellent: 95% and 97%, respectively with a H2/CO ratio of 1.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号