共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
动态图像序列中的运动目标检测 总被引:7,自引:4,他引:7
根据动态图像序列中背景因成像过程中各种因素而产生变化所存在的复杂性,提出了自适应的前景目标检测方法。首先,建立图像每一像素点的高斯分布模型,并根据序列中的当前帧及历史帧信息自适应地调整模型的参数。然后,结合图像帧间的差分信息以及灰度分布的先验概率等因素将图像从空间域映射至统计域。最后,在统计域中对前景目标进行鲁棒分割。实验的结果反映了该方法的有效性。 相似文献
4.
基于视频图像的绊线检测方法研究 总被引:2,自引:0,他引:2
在绊线检测中,高斯模型用于背景建模,背景差分用于前景目标提取,扫描虚拟线上所有点,当检测到目标穿越绊线后,若为双向绊线,系统直接报警;若为单向绊线,利用目标颜色直方图欧拉距离来确定目标运动方向,如果目标运动方向与禁止穿越方向一致,系统报警。实验表明,给出的方法能够准确实现绊线检测。 相似文献
5.
6.
该文提出了一种新的彩色图像序列中运动目标提取的方法,它将彩色图像序列看作一个时空三维矩阵,在空域处理(帧内)中采用二维亮度直方图结合色度均匀性的方法进行空域分割;在时域处理(帧间)中采用时域梯度方法并利用时域色度差异分割出运动信息;然后将时、空分割图像采用子块相关方法合并成最终结果。实验结果表明,由于利用了空域分割结果,该方法具有很高的鲁棒性,可有效去除非目标运动信息及阴影等。 相似文献
7.
In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation as a parsing graph, in a spirit similar to parsing sentences in speech and natural language. The algorithm constructs the parsing graph and re-configures it dynamically using a set of moves, which are mostly reversible Markov chain jumps. This computational framework integrates two popular inference approaches—generative (top-down) methods and discriminative (bottom-up) methods. The former formulates the posterior probability in terms of generative models for images defined by likelihood functions and priors. The latter computes discriminative probabilities based on a sequence (cascade) of bottom-up tests/filters. In our Markov chain algorithm design, the posterior probability, defined by the generative models, is the invariant (target) probability for the Markov chain, and the discriminative probabilities are used to construct proposal probabilities to drive the Markov chain. Intuitively, the bottom-up discriminative probabilities activate top-down generative models. In this paper, we focus on two types of visual patterns—generic visual patterns, such as texture and shading, and object patterns including human faces and text. These types of patterns compete and cooperate to explain the image and so image parsing unifies image segmentation, object detection, and recognition (if we use generic visual patterns only then image parsing will correspond to image segmentation (Tu and Zhu, 2002. IEEE Trans. PAMI, 24(5):657–673). We illustrate our algorithm on natural images of complex city scenes and show examples where image segmentation can be improved by allowing object specific knowledge to disambiguate low-level segmentation cues, and conversely where object detection can be improved by using generic visual patterns to explain away shadows and occlusions. 相似文献
8.
提出了一种利用RADARSAT-2全极化SAR影像和极化特征参数提取精确的海岛礁范围的技术方法。极化特征熵参数描述了目标散射的随机性,与海水相比海岛礁处于较高的去极化状态,因此海岛礁的熵值明显大于海水的熵值。首先本文利用EM(Expectation Maximization,最大数学期望)算法自动计算的提取海岛礁最佳阈值对熵参数文件进行阈值分割,得到海岛礁的初始分割结果。由于受到船只和海水表面波浪的影响,海水部分也会存在与海岛礁近似的熵值。因此初步阈值分割得到的海岛礁结果会有部分海水和船只等,利用PSNR(Peak value signal-to-noise ratio,峰值信噪比)提取海水大致范围并剔除海水范围内初始分割结果中的噪声部分。最后根据TM影像提取的海岛礁范围进行精度评价,实验结果表明该技术方法能够从极化SAR影像上准确提取海岛礁范围。 相似文献
9.
提出模糊聚类和边缘检测结合的彩色图像分割方法,以色彩图像直方图中自适应搜索到的峰值作为聚类中心,对图像进行模糊聚类。然后对模糊聚类后的图像进行边缘检测,检测出面积较大的区域的边缘,首先在区域内部进行融合,然后在区域边界和面积较小色彩相似的区域融合。实验表明,本方法不需预先确定聚类数目、聚类中心初始化,在区域融合后,可得到较好的分割效果。 相似文献
10.
11.
船只检测是实现船只航行安全的重要方法之一,利用SAR图像可实现船只检测。本文论述了海上船只检测的方法、过程及相应的算法。根据实际检测多位于存在陆地和岛屿的近海图像,利用分形维作为海陆分割的阈值,采用改进的分裂合并算法进行分割,并利用轮廓跟踪及种子填充消除分割遗留的孤立区域,使得海陆分割达到了较好的效果。在比较、试验的基础上,船只检测中采用了改进的CFAR算法,依据视数的不同选择不同的杂波模型,既消除了杂波模型参数计算复杂性,又取得了较好的时效性。通过试验证明,本文提出的算法在实际检测中取得了较好的效果,识别率高、虚景率低且实时性好。 相似文献
12.
针对边缘检测算法的局限性及灰度水坝图像的特点,提出了一种基于边缘检测及纹理分析相结合的灰度图像分割算法,首先利用边缘检测算法对待处理图像进行边缘检测得到图像的粗分割,然后在原灰度图像中对得到的边缘位置点进行纹理分析,去除检测到的非目标对象的边缘从而得到分割图像,即细分割。将该算法应用到河坝监测系统中,实验证明该算法达到了很好的分割效果。 相似文献
13.
Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent
top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms,
they often give coarse segmentations that can be significantly refined using low-level cues. This raises the question of how
to combine both top-down and bottom-up cues in a principled manner.
In this paper we approach this problem using supervised learning. Given a training set of ground truth segmentations we train
a fragment-based segmentation algorithm which takes into account both bottom-up and top-down cues simultaneously, in contrast to most existing algorithms which train top-down and bottom-up modules separately. We formulate the problem
in the framework of Conditional Random Fields (CRF) and derive a feature induction algorithm for CRF, which allows us to efficiently
search over thousands of candidate fragments. Whereas pure top-down algorithms often require hundreds of fragments, our simultaneous
learning procedure yields algorithms with a handful of fragments that are combined with low-level cues to efficiently compute
high quality segmentations. 相似文献
14.
15.
提出了一种基于三角剖分的形状检索改进算法.算法的基本思想是:先对图像进行边界跟踪和角点检测;然后寻找初始角点在边界跟踪中的对应点,并对找到对应点的角点按对应点在边界跟踪中的顺序进行排序;再对排序后的角点进行德洛内三角剖分,得到能表示目标真实形状的三角形序列;最后计算三角形序列的角度直方图作为形状特征进行相似性匹配.实验结果表明,该算法有较高的效率和检索精度. 相似文献
16.
一种新颖的基于边缘检测的图像分割方法 总被引:2,自引:0,他引:2
针对家庭数字照片的特点以及应用范围,提出了带有衰减因子的Robert微分算子与动态的自适应阈值相结合的边缘检测方法,并利用了边缘检测后边缘点的方向信息,作为Hough变换的方向角,可以较快提取出边缘线段,从而通过边缘跟踪获得无噪声点的相似区域,这为进一步提取图像的颜色特征或形状特征提供了良好的基础。 相似文献
17.
Image segmentation is one of the most important and challenging problems in image processing. The main purpose of image segmentation is to partition an image into a set of disjoint regions with uniform attributes. In this study, we propose an improved method for edge detection and image segmentation using fuzzy cellular automata. In the first stage, we introduce a new edge detection method based on fuzzy cellular automata, called the texture histogram, and empirically demonstrate the efficiency of the proposed method and its robustness in denoising images. In the second stage, we propose an edge detection algorithm by considering the mean values of the edges matrix. In this algorithm, we use four fuzzy rules instead of 32 fuzzy rules reported earlier in the literature. In the third and final stage, we use the local edge in the edge detection stage to more accurately accomplish image segmentation. We demonstrate that the proposed method produces better output images in comparison with the separate segmentation and edge detection methods studied in the literature. In addition, we show that the method proposed in this study is more flexible and efficient when noise is added to an image. 相似文献
18.
基于二值信息的颜色和形状特征的图像检索 总被引:1,自引:0,他引:1
由于单一特征不足以准确地描述图像,提出了一种结合颜色、形状特征的图像检索方法.提出了新的用二值信息来表示图像的主色、全局色和形状特征的方法,并由此特征构造两个过滤器快速地过滤图像库中明显不相同的图像,以提高检索速度;采用改进的颜色直方图和形状基本特征进行相似度计算,为进一步提高图像检索的质量引入相关反馈机制,提出了一种动态调整两幅图像相似度中颜色特征和形状特征的权值系数的方法.文中方法与其它方法进行了比较实验,结果表明,该方法优于其它方法. 相似文献
19.
针对红外图像边缘模糊和非均匀性噪声强的特点,提出了一种阈值分割与形态学相结合来提取红外图像特征的方法,对红外图像进行边缘提取。仿真实验结果表明:该方法能够清晰、有效的提取红外图像的边缘,改善图像质量,是一种有效的边缘检测方法,具有较好的实用性。 相似文献
20.
针对基于单幅图像的三维重建方法的多解性和病态性的难点问题,提出了一种基于Harris多尺度角点检测的图像分割算法,将复杂的工程图像分离成若干个简单基本几何形体,分别对其重建以避免直接恢复深度信息的病态解问题;为了提高基于角点的图像配准算法的配准精度,把多分辨分析的思想引入到经典的Harris角点检测中,构造了基于小波变换的灰度强度变化公式,并得到了具有尺度变换特性的自相关矩阵,从而使改进的Harris角点检测算法具有旋转、平移和尺度的不变性;实验验证了改进算法的快速、准确和稳定的特性。 相似文献