首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
We construct a segmentation scheme that combines top-down with bottom-up processing. In the proposed scheme, segmentation and recognition are intertwined rather than proceeding in a serial manner. The top-down part applies stored knowledge about object shapes acquired through learning, whereas the bottom-up part creates a hierarchy of segmented regions based on uniformity criteria. Beginning with unsegmented training examples of class and non-class images, the algorithm constructs a bank of class-specific fragments and determines their figure-ground segmentation. This bank is then used to segment novel images in a top-down manner: the fragments are first used to recognize images containing class objects, and then to create a complete cover that best approximates these objects. The resulting segmentation is then integrated with bottom-up multi-scale grouping to better delineate the object boundaries. Our experiments, applied to a large set of four classes (horses, pedestrians, cars, faces), demonstrate segmentation results that surpass those achieved by previous top-down or bottom-up schemes. The main novel aspects of this work are the fragment learning phase, which efficiently learns the figure-ground labeling of segmentation fragments, even in training sets with high object and background variability; combining the top-down segmentation with bottom-up criteria to draw on their relative merits; and the use of segmentation to improve recognition.  相似文献   

2.
In this work, we formulate the interaction between image segmentation and object recognition in the framework of the Expectation-Maximization (EM) algorithm. We consider segmentation as the assignment of image observations to object hypotheses and phrase it as the E-step, while the M-step amounts to fitting the object models to the observations. These two tasks are performed iteratively, thereby simultaneously segmenting an image and reconstructing it in terms of objects. We model objects using Active Appearance Models (AAMs) as they capture both shape and appearance variation. During the E-step, the fidelity of the AAM predictions to the image is used to decide about assigning observations to the object. For this, we propose two top-down segmentation algorithms. The first starts with an oversegmentation of the image and then softly assigns image segments to objects, as in the common setting of EM. The second uses curve evolution to minimize a criterion derived from the variational interpretation of EM and introduces AAMs as shape priors. For the M-step, we derive AAM fitting equations that accommodate segmentation information, thereby allowing for the automated treatment of occlusions. Apart from top-down segmentation results, we provide systematic experiments on object detection that validate the merits of our joint segmentation and recognition approach.  相似文献   

3.
In this paper, we propose a general framework for fusing bottom-up segmentation with top-down object behavior inference over an image sequence. This approach is beneficial for both tasks, since it enables them to cooperate so that knowledge relevant to each can aid in the resolution of the other, thus enhancing the final result. In particular, the behavior inference process offers dynamic probabilistic priors to guide segmentation. At the same time, segmentation supplies its results to the inference process, ensuring that they are consistent both with prior knowledge and with new image information. The prior models are learned from training data and they adapt dynamically, based on newly analyzed images. We demonstrate the effectiveness of our framework via particular implementations that we have employed in the resolution of two hand gesture recognition applications. Our experimental results illustrate the robustness of our joint approach to segmentation and behavior inference in challenging conditions involving complex backgrounds and occlusions of the target object.  相似文献   

4.
从序列图像中提取变化区域是运动检测的主要作用,动态背景的干扰严重影响检测结果,使得有效性运动检测成为一项困难工作。受静态图像显著性检测启发,提出了一种新的运动目标检测方法,采用自底向上与自顶向下的视觉计算模型相结合的方式获取图像的空时显著性:先检测出视频序列中的空间显著性,在其基础上加入时间维度,利用改进的三帧差分算法获取具有运动目标的时间显著性,将显著性目标的检测视角由静态图像转换为空时性均显著的运动目标。实验和分析结果表明:新方法在摄像机晃动等动态背景中能较准确检测出空时均显著的运动目标,具有较高的鲁棒性。  相似文献   

5.
In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation as a parsing graph, in a spirit similar to parsing sentences in speech and natural language. The algorithm constructs the parsing graph and re-configures it dynamically using a set of moves, which are mostly reversible Markov chain jumps. This computational framework integrates two popular inference approaches—generative (top-down) methods and discriminative (bottom-up) methods. The former formulates the posterior probability in terms of generative models for images defined by likelihood functions and priors. The latter computes discriminative probabilities based on a sequence (cascade) of bottom-up tests/filters. In our Markov chain algorithm design, the posterior probability, defined by the generative models, is the invariant (target) probability for the Markov chain, and the discriminative probabilities are used to construct proposal probabilities to drive the Markov chain. Intuitively, the bottom-up discriminative probabilities activate top-down generative models. In this paper, we focus on two types of visual patterns—generic visual patterns, such as texture and shading, and object patterns including human faces and text. These types of patterns compete and cooperate to explain the image and so image parsing unifies image segmentation, object detection, and recognition (if we use generic visual patterns only then image parsing will correspond to image segmentation (Tu and Zhu, 2002. IEEE Trans. PAMI, 24(5):657–673). We illustrate our algorithm on natural images of complex city scenes and show examples where image segmentation can be improved by allowing object specific knowledge to disambiguate low-level segmentation cues, and conversely where object detection can be improved by using generic visual patterns to explain away shadows and occlusions.  相似文献   

6.
Recently, various bag-of-features (BoF) methods show their good resistance to within-class variations and occlusions in object categorization. In this paper, we present a novel approach for multi-object categorization within the BoF framework. The approach addresses two issues in BoF related methods simultaneously: how to avoid scene modeling and how to predict labels of an image when multiple categories of objects are co-existing. We employ a biased sampling strategy which combines the bottom-up, biologically inspired saliency information and loose, top-down class prior information for object class modeling. Then this biased sampling component is further integrated with a multi-instance multi-label leaning and classification algorithm. With the proposed biased sampling strategy, we can perform multi-object categorization within an image without semantic segmentation. The experimental results on PASCAL VOC2007 and SUN09 show that the proposed method significantly improves the discriminative ability of BoF methods and achieves good performance in multi-object categorization tasks.  相似文献   

7.
We present an approach to visual object-class segmentation and recognition based on a pipeline that combines multiple figure-ground hypotheses with large object spatial support, generated by bottom-up computational processes that do not exploit knowledge of specific categories, and sequential categorization based on continuous estimates of the spatial overlap between the image segment hypotheses and each putative class. We differ from existing approaches not only in our seemingly unreasonable assumption that good object-level segments can be obtained in a feed-forward fashion, but also in formulating recognition as a regression problem. Instead of focusing on a one-vs.-all winning margin that may not preserve the ordering of segment qualities inside the non-maximum (non-winning) set, our learning method produces a globally consistent ranking with close ties to segment quality, hence to the extent entire object or part hypotheses are likely to spatially overlap the ground truth. We demonstrate results beyond the current state of the art for image classification, object detection and semantic segmentation, in a number of challenging datasets including Caltech-101, ETHZ-Shape as well as PASCAL VOC 2009 and 2010.  相似文献   

8.
This paper presents an innovative three dimensional occlusion detection and restoration strategy for the recognition of three dimensional faces partially occluded by unforeseen, extraneous objects. The detection method considers occlusions as local deformations of the face that correspond to perturbations in a space designed to represent non-occluded faces. Once detected, occlusions represent missing information, or “holes” in the faces. The restoration module exploits the information provided by the non-occluded part of the face to recover the whole face, using an appropriate basis for the space in which non-occluded faces lie. The restoration strategy does not depend on the method used to detect occlusions and can also be applied to restore faces in the presence of noise and missing pixels due to acquisition inaccuracies. The strategy has been experimented on the occluded acquisitions taken from the Bosphorus 3D face database. A method for the generation of real-looking occlusions is also presented. Artificial occlusions, applied to the UND database, allowed for an in-depth analysis of the capabilities of our approach. Experimental results demonstrate the robustness and feasibility of our approach.  相似文献   

9.
Accurate Object Recognition with Shape Masks   总被引:1,自引:0,他引:1  
In this paper we propose an object recognition approach that is based on shape masks—generalizations of segmentation masks. As shape masks carry information about the extent (outline) of objects, they provide a convenient tool to exploit the geometry of objects. We apply our ideas to two common object class recognition tasks—classification and localization. For classification, we extend the orderless bag-of-features image representation. In the proposed setup shape masks can be seen as weak geometrical constraints over bag-of-features. Those constraints can be used to reduce background clutter and help recognition. For localization, we propose a new recognition scheme based on high-dimensional hypothesis clustering. Shape masks allow to go beyond bounding boxes and determine the outline (approximate segmentation) of the object during localization. Furthermore, the method easily learns and detects possible object viewpoints and articulations, which are often well characterized by the object outline. Our experiments reveal that shape masks can improve recognition accuracy of state-of-the-art methods while returning richer recognition answers at the same time. We evaluate the proposed approach on the challenging natural-scene Graz-02 object classes dataset.  相似文献   

10.
This paper presents an object-based image retrieval using a method based on visual-pattern matching. A visual pattern is obtained by detecting the line edge from a square block using the moment-preserving edge detector. It is desirable and yet remains as a challenge for querying multimedia data by finding an object inside a target image. Given an object model, an added difficulty is that the object might be translated, rotated, and scaled inside a target image. Object segmentation and recognition is the primary step of computer vision for applying to image retrieval of higher-level image analysis. However, automatic segmentation and recognition of objects via object models is a difficult task without a priori knowledge about the shape of objects. Instead of segmentation and detailed object representation, the objective of this research is to develop and apply computer vision methods that explore the structure of an image object by visual-pattern detection to retrieve images from a database. A voting scheme based on generalized Hough transform is proposed to provide object search method, which is invariant to the translation, rotation, scaling of image data, and hence, invariant to orientation and position. Computer simulation results show that the proposed method gives good performance in terms of retrieval accuracy and robustness.  相似文献   

11.
Uncertain data are inherent in some important applications. Although a considerable amount of research has been dedicated to modeling uncertain data and answering some types of queries on uncertain data, how to conduct advanced analysis on uncertain data remains an open problem at large. In this paper, we tackle the problem of skyline analysis on uncertain data. We propose a novel probabilistic skyline model where an uncertain object may take a probability to be in the skyline, and a p-skyline contains all objects whose skyline probabilities are at least p (0 < p ≤ 1). Computing probabilistic skylines on large uncertain data sets is challenging. We develop a bounding-pruning-refining framework and three algorithms systematically. The bottom-up algorithm computes the skyline probabilities of some selected instances of uncertain objects, and uses those instances to prune other instances and uncertain objects effectively. The top-down algorithm recursively partitions the instances of uncertain objects into subsets, and prunes subsets and objects aggressively. Combining the advantages of the bottom-up algorithm and the top-down algorithm, we develop a hybrid algorithm to further improve the performance. Our experimental results on both the real NBA player data set and the benchmark synthetic data sets show that probabilistic skylines are interesting and useful, and our algorithms are efficient on large data sets.  相似文献   

12.
Background subtraction is an elementary method for detection of foreground objects and their segmentations. Obviously it requires an observation image as well as a background one. In this work we attempt to remove the last requirement by reconstructing the background from the observation image and a guess on the location of the object to be segmented via variational inpainting method. A numerical evaluation of this reconstruction provides a “disocclusion measure” and the correct foreground segmentation region is expected to maximize this measure. This formulation is in fact an optimal control problem, where controls are shapes/regions and states are the corresponding inpaintings. Optimization of the disocclusion measure leads formally to a coupled contour evolution equation, an inpainting equation (the state equation) as well as a linear PDE depending on the inpainting (the adjoint state equation). The contour evolution is implemented in the framework of level sets. Finally, the proposed method is validated on various examples. We focus among others in the segmentation of calcified plaques observed in radiographs from human lumbar aortic regions.  相似文献   

13.
Even though visual attention models using bottom-up saliency can speed up object recognition by predicting object locations, in the presence of multiple salient objects, saliency alone cannot discern target objects from the clutter in a scene. Using a metric named familiarity, we propose a top-down method for guiding attention towards target objects, in addition to bottom-up saliency. To demonstrate the effectiveness of familiarity, the unified visual attention model (UVAM) which combines top-down familiarity and bottom-up saliency is applied to SIFT based object recognition. The UVAM is tested on 3600 artificially generated images containing COIL-100 objects with varying amounts of clutter, and on 126 images of real scenes. The recognition times are reduced by 2.7× and 2×, respectively, with no reduction in recognition accuracy, demonstrating the effectiveness and robustness of the familiarity based UVAM.  相似文献   

14.
We propose a computational model which computes the importance of 2-D object shape parts, and we apply it to detect and localize objects with and without occlusions. The importance of a shape part (a localized contour fragment) is considered from the perspective of its contribution to the perception and recognition of the global shape of the object. Accordingly, the part importance measure is defined based on the ability to estimate/recall the global shapes of objects from the local part, namely the part’s “shape reconstructability”. More precisely, the shape reconstructability of a part is determined by two factors–part variation and part uniqueness. (i) Part variation measures the precision of the global shape reconstruction, i.e. the consistency of the reconstructed global shape with the true object shape; and (ii) part uniqueness quantifies the ambiguity of matching the part to the object, i.e. taking into account that the part could be matched to the object at several different locations. Taking both these factors into consideration, an information theoretic formulation is proposed to measure part importance by the conditional entropy of the reconstruction of the object shape from the part. Experimental results demonstrate the benefit with the proposed part importance in object detection, including the improvement of detection rate, localization accuracy, and detection efficiency. By comparing with other state-of-the-art object detectors in a challenging but common scenario, object detection with occlusions, we show a considerable improvement using the proposed importance measure, with the detection rate increased over $10~\%$ . On a subset of the challenging PASCAL dataset, the Interpolated Average Precision (as used in the PASCAL VOC challenge) is improved by 4–8 %. Moreover, we perform a psychological experiment which provides evidence suggesting that humans use a similar measure for part importance when perceiving and recognizing shapes.  相似文献   

15.
提出一种基于注意力的图像分割算法,在视觉场景选择机制基础上结合目标色彩特征的任务驱动机制,形成了自下而上和自上而下的注意力集成分割机理。该算法在图像的多尺度空间中,把视觉场景的亮度、颜色和方向特征与任务目标色彩特征同时进行提取,生成场景和目标相结合的显著图,然后在基于视觉注意力图像空间中对“场景-目标” 显著图进行归一化的跨尺度融合,最后通过双线性插值和显著图连通区域二值化分割出图像目标注意力焦点。应用该算法对自然场景与室内场景图像进行实验,结果表明该方法在各种环境中尤其是干扰物体较显著的情形下都能成功地分割提取出目标物体。  相似文献   

16.
In the mainstream top-down approach, money is neutral except with special assumptions. Intending to make money “essential”, random-matching models introduced decentralisation by considering pair-wise transactions. Nevertheless, in both cases top-level equilibrium constrains agents’ behaviour. Instead, here we use a bottom-up approach. In a competitive market, decentralised autonomous agents meet and exchange a commodity for money. Their decisions use minimal information. They are triggered by simple rules founded on a “satisficing” procedure and on a random decision process that simulates bounded rationality. The conclusions are, first, that non-monetary costs are essential to avoid collapse of the economy. Second, mainly “price setters” who are adequately satisfied achieve equilibrium protecting themselves by evolving advantages to avoid competition that is too tough. Third, and the most important conclusion is that money ceases to be neutral as soon as competition arises between individual firms.  相似文献   

17.
Robust Object Detection with Interleaved Categorization and Segmentation   总被引:5,自引:0,他引:5  
This paper presents a novel method for detecting and localizing objects of a visual category in cluttered real-world scenes. Our approach considers object categorization and figure-ground segmentation as two interleaved processes that closely collaborate towards a common goal. As shown in our work, the tight coupling between those two processes allows them to benefit from each other and improve the combined performance. The core part of our approach is a highly flexible learned representation for object shape that can combine the information observed on different training examples in a probabilistic extension of the Generalized Hough Transform. The resulting approach can detect categorical objects in novel images and automatically infer a probabilistic segmentation from the recognition result. This segmentation is then in turn used to again improve recognition by allowing the system to focus its efforts on object pixels and to discard misleading influences from the background. Moreover, the information from where in the image a hypothesis draws its support is employed in an MDL based hypothesis verification stage to resolve ambiguities between overlapping hypotheses and factor out the effects of partial occlusion. An extensive evaluation on several large data sets shows that the proposed system is applicable to a range of different object categories, including both rigid and articulated objects. In addition, its flexible representation allows it to achieve competitive object detection performance already from training sets that are between one and two orders of magnitude smaller than those used in comparable systems.  相似文献   

18.
We introduce a novel variational method for the extraction of objects with either bilateral or rotational symmetry in the presence of perspective distortion. Information on the symmetry axis of the object and the distorting transformation is obtained as a by--product of the segmentation process. The key idea is the use of a flip or a rotation of the image to segment as if it were another view of the object. We call this generated image the symmetrical counterpart image. We show that the symmetrical counterpart image and the source image are related by planar projective homography. This homography is determined by the unknown planar projective transformation that distorts the object symmetry. The proposed segmentation method uses a level-set-based curve evolution technique. The extraction of the object boundaries is based on the symmetry constraint and the image data. The symmetrical counterpart of the evolving level-set function provides a dynamic shape prior. It supports the segmentation by resolving possible ambiguities due to noise, clutter, occlusions, and assimilation with the background. The homography that aligns the symmetrical counterpart to the source level-set is recovered via a registration process carried out concurrently with the segmentation. Promising segmentation results of various images of approximately symmetrical objects are shown.  相似文献   

19.
This paper provides an overview of a multi-modal wearable computer system, SNAP&TELL. The system performs real-time gesture tracking, combined with audio-based control commands, in order to recognize objects in an environment, including outdoor landmarks. The system uses a single camera to capture images, which are then processed to perform color segmentation, fingertip shape analysis, robust tracking, and invariant object recognition, in order to quickly identify the objects encircled and SNAPped by the user’s pointing gesture. In addition, the system returns an audio narration, TELLing the user information concerning the object’s classification, historical facts, usage, etc. This system provides enabling technology for the design of intelligent assistants to support “Web-On-The-World” applications, with potential uses such as travel assistance, business advertisement, the design of smart living and working spaces, and pervasive wireless services and internet vehicles. An erratum to this article can be found at An erratum to this article can be found at  相似文献   

20.
In this paper, a new artificial neural network model is proposed for visual object recognition, in which the bottom-up, sensory-driven pathway and top-down, expectation-driven pathway are fused in information processing and their corresponding weights are learned based on the fused neuron activities. During the supervised learning process, the target labels are applied to update the bottom-up synaptic weights of the neural network. Meanwhile, the hypotheses generated by the bottom-up pathway produce expectations on sensory inputs through the top-down pathway. The expectations are constrained by the real data from the sensory inputs, which can be used to update the top-down synaptic weights accordingly. To further improve the visual object recognition performance, the multi-scale histograms of oriented gradients (MS-HOG) method is proposed to extract local features of visual objects from images. Extensive experiments on different image datasets demonstrate the efficiency and robustness of the proposed neural network model with features extracted using the MS-HOG method on visual object recognition compared with other state-of-the-art methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号