首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The introduction of different reinforcement materials (yarns, fibrils, etc) into the membranes has been investigated with the aim of maintaining adequate membrane properties in terms of mechanical strength, good chemical stability, low swelling at critical temperatures and a stable electrochemical performance in PEFC. An innovative technique for the development of membranes is based on polymeric films containing polymeric nanofibres obtained through electrospinning. The electrospinning of Nafion blends with polyvinylpirrolidone (PVP) and polystyrene (PS) was investigated in this work. In particular, the morphology and diameter of electrospun fibres as a function of the electrospinning parameters and solution preparation have been studied and in both cases, a critical concentration of blend solution was found. Beaded fibres were obtained above such a concentration and, below it, only fibre mats were observed. Reinforced Nafion-based membranes were realised by using the obtained spun films. Preliminary proton conductivity and fuel cell results have shown the capability of operating in a fuel cell environment with a slightly higher performance than pure Nafion but having an improved stability at high temperatures.  相似文献   

2.
Melt electrospun fibers of poly(?-caprolactone) are accurately deposited using an automated stage as the collector. Matching the translation speed of the collector to the speed of the melt electrospinning jet establishes control over the location of fiber deposition. In this sense, melt electrospinning writing can be seen to bridge the gap between solution electrospinning and direct writing additive manufacturing processes.  相似文献   

3.
The development of biomimetic highly-porous scaffolds is essential for successful tissue engineering. Segmented poly(ester urethane)s and poly(ester urethane urea)s have been infrequently used for the fabrication of electrospun nanofibrous tissues, which is surprising because these polymers represent a very large variety of materials with tailored properties. This study reports the preparation of new electrospun elastomeric polyurethane scaffolds. Two novel segmented polyurethanes (SPU), synthesized from poly(ε-caprolactone) diol, 1,6-hexamethylene diisocyanate, and diester-diphenol or diurea-diol chain extenders, were used (Caracciolo et al. in J Mater Sci Mater Med 20:145–155, 2009). The spinnability and the morphology of the electrospun SPU scaffolds were investigated and discussed. The electrospinning parameters such as solution properties (polymer concentration and solvent) and processing parameters (applied electric field, needle to collector distance and solution flow rate) were optimized to achieve smooth, uniform bead-free fibers with diameter (~700 nm) mimicking the protein fibers of native extracellular matrix (ECM). The obtained elastomeric polyurethane scaffolds could be appropriate for soft tissue-engineering applications.  相似文献   

4.
Nanofiber manufacturing is one of the key advancements in nanotechnology today. Over the past few years, there has been a tremendous growth of research activities to explore electrospinning for nanofiber formation from a rich variety of materials. This quite simple and cost effective process operates on the principle that the solution is extracted under the action of a high electric field. Once the voltage is sufficiently high, a charged jet is ejected following a complicated looping trajectory. During its travel, the solvent evaporates leaving behind randomly oriented nanofibers accumulated on the collector. The combination of their nanoscale dimensionality, high surface area, porosity, flexibility and superior strength makes the electrospun fibers suitable for several value-added applications, such as filters, protecting clothes, high performance structures and biomedical devices. In this study biodegradable cellulose acetate (CA) nanofibrous membranes were produced using electrospinning. The device utilized consisted of a syringe equipped with a metal needle, a microdialysis pump, a high voltage supply and a collector. The morphology of the yielded fibers was determined using SEM. The effect of various parameters, including electric field strength, tip-to-collector distance, solution feed rate and composition on the morphological features of the electrospun fibers was examined. The optimum operating conditions for the production of uniform, non-beaded fibers with submicron diameter were also explored. The biodegradable CA nanofiber membranes are suitable as tissue engineering scaffolds and as reinforcements of biopolymer matrix composites in foils by ultrasonic welding methods.  相似文献   

5.
Multiwalled carbon nanotube (MWNT)/poly(vinyl butyral) (PVB) composite nanofibers were prepared by electrospinning, successive twisting and heat treatment. The MWNTs were highly oriented in an electrified thin jet during electrospinning. The heat treatment of the twisted electrospun nanofiber yarns produced the characteristics of the CNT in the composite nanofiber yarns and enhanced their electrical properties, mechanical properties, and thermal properties. The electrical conductivity of the heated yarn was significantly enhanced and showed the maximum value of 154 S cm(-1) for the yarn heated at 400 °C. It is an order of magnitude higher than other electrospun CNT composite materials. These results demonstrated that the novel top-down process based on electrospinning, twisting, and heat treatment provide a promising option for simple and large-scale manufacture of CNT assemblies.  相似文献   

6.
In this paper, a novel combination method of electrospinning and rapid prototyping (RP) fused deposition modeling (FDM) is proposed for the fabrication of a tissue engineering heart valve (TEHV) scaffold. The scaffold preparation consisted of two steps: tri-leaflet scaffold fabrication and heart valve ring fabrication. With the purpose of mimicking the anisotropic mechanical properties of the natural heart valve leaflet, electrospun thermoplastic polyurethane (ES-TPU) was introduced as the tri-leaflet scaffold material. ES-TPU scaffolds can be fabricated to have a well-aligned fiber network, which is important for applications involving mechanically anisotropic soft tissues. We developed ES-TPU scaffolds as heart valve leaflet materials under variable speed conditions and measured fiber alignment by fast Fourier transform (FFT). By using FFT to assign relative alignment values to an electrospun matrix, it is possible to systematically evaluate how different processing variables affect the structure and material properties of a scaffold. TPU was suspended at certain concentrations and electrospun from 1,1,1,3,3,3-hexafluoro-2-propanol onto rotating mandrels (200–3000 rpm). The scaffold morphological property and mechanical anisotropic property are discussed in the paper as a function of fiber diameter and mandrel RPM. The induction of varying degrees of anisotropy imparted distinctive material properties to the electrospun scaffolds. A dynamic optimum design of the heart valve ring graft was constructed by FDM. Fabrication of a 3D heart valve ring was constructed using pro-engineer based on optimum hemodynamic analysis and was converted to an STL file format. The model was then created from PCL which was sewed and glued with electrospun nanofibrous leaflets. This proposed method was proven as a promising fabrication process in fabricating a specially designed graft with the correct physical and mechanical properties.  相似文献   

7.
静电纺丝制备聚合物超细纤维的研究及应用   总被引:2,自引:0,他引:2  
静电纺丝是一种制备聚合物超细纤维的有效方法,并可直接获得直径达5~500nm的超细纤维膜.综述了静电纺丝的发展过程、基本原理和研究现状,介绍了静电纺丝超细纤维膜微观形貌的影响因素及其应用前景.  相似文献   

8.
Conducting polymers were electrospun into fibers with other spinnable polymers. The optical properties of the electrospun fibers were characterized in comparison with spin-cast thin films. The electrospun conducting polymer-based fibers with different fiber diameters of 100 nm and 1 microm were prepared. Aligned nanofibers were prepared using a rotating disc collector in order to induce molecular orientation in the electrospun fibers. The effect of electrospinning processes on the optical properties was discussed in terms of fiber diameter and molecular orientation.  相似文献   

9.
Electrospinning, a technique well known for fabricating nanoscale fibers, has recently been studied extensively due to its various advantages such as high surface-to-volume ratio, tunable porosity, and ease of surface functionalization. The resulting fibers are extremely useful for applications in the fields of tissue engineering, drug delivery, and wound dressing. Since electrospun fiber mimic extracellular matrix of tissue in terms of scale and morphology, its potential to be used as scaffold is continuously explored by researchers, especially in the field of vascular, nerve, bone, and tendon/ligament tissue engineering. Besides morphology, physical, and chemical properties, electrospun scaffolds are often evaluated through various cell studies. Researchers have adopted approaches such as surface modification and drug loading to enhance the property and function of scaffold. This review gives an overview of some current aspects of various applications of electrospun fibers, particularly in biomedical fields, how researchers have enhanced electrospun fibers with different methods and attempted to overcome the inherent limitation of electrospinning by using novel techniques.  相似文献   

10.
In this paper, a novel combination method of electrospinning and rapid prototyping (RP) fused deposition modeling (FDM) is proposed for the fabrication of a tissue engineering heart valve (TEHV) scaffold. The scaffold preparation consisted of two steps: tri-leaflet scaffold fabrication and heart valve ring fabrication. With the purpose of mimicking the anisotropic mechanical properties of the natural heart valve leaflet, electrospun thermoplastic polyurethane (ES-TPU) was introduced as the tri-leaflet scaffold material. ES-TPU scaffolds can be fabricated to have a well-aligned fiber network, which is important for applications involving mechanically anisotropic soft tissues. We developed ES-TPU scaffolds as heart valve leaflet materials under variable speed conditions and measured fiber alignment by fast Fourier transform (FFT). By using FFT to assign relative alignment values to an electrospun matrix, it is possible to systematically evaluate how different processing variables affect the structure and material properties of a scaffold. TPU was suspended at certain concentrations and electrospun from 1,1,1,3,3,3-hexafluoro-2-propanol onto rotating mandrels (200―3000 rpm). The scaffold morphological property and mechanical anisotropic property are discussed in the paper as a function of fiber diameter and mandrel RPM. The induction of varying degrees of anisotropy imparted distinctive material properties to the electrospun scaffolds. A dynamic optimum design of the heart valve ring graft was constructed by FDM. Fabrication of a 3D heart valve ring was constructed using pro-engineer based on optimum hemodynamic analysis and was converted to an STL file format. The model was then created from PCL which was sewed and glued with electrospun nanofibrous leaflets. This proposed method was proven as a promising fabrication process in fabricating a specially designed graft with the correct physical and mechanical properties.  相似文献   

11.
Conjugated polymers have been extensively applied as active materials in nanostructured platforms for optical and electrical devices. The incorporation of metal nanoparticles (NPs) into the polymer-based platform arises as a strategy to develop novel hybrid functional nanocomposites with enhanced electrical and optical properties. However, efficient and simple processing routes to produce such nanocomposites are still on demand. In this work, we present an effective route to obtain functional nanocomposites based on electrospun nanofibers coated with gold nanoparticles, displaying interesting optical and electrical properties. Polymethyl methacrylate (PMMA) electrospun nanofibers doped with poly(3-hexyl thiophene-2,5-diyl) (P3HT) were obtained by the electrospinning technique, and displayed a strong red emission centered at 650 nm assigned to P3HT. Such nanofibers were deposited on to fluorine-doped tin oxide electrodes and with modified with gold nanoparticles (AuNPs) in order to produce hybrid composite materials. The performance of electrodes modified with PMMA/P3HT-AuNPs composite material was evaluated by impedance spectroscopy and revealed an enhancement of electron transfer kinetics, which indicates it as a potential platform for optical and electrochemical (bio)sensors.  相似文献   

12.
Ishii Y  Sakai H  Murata H 《Nanotechnology》2011,22(20):205202
We demonstrate a simple and versatile method for the fabrication of a submicron channel for an organic field-effect transistor (OFET) using a single electrospun fibre as a shadow mask. A single electrospun fibre is produced by an alternative switching electrospinning method and is stretched 2.5-fold. The average diameter of the stretched fibres is 302 nm. The stretched fibre is placed on ultrathin dielectric layers of aluminium oxide and a self-assembled monolayer (SAM). During electrode deposition the fibre acts as a very small shadow mask. After removing the fibre, electrodes with very narrow gaps of around 350 nm and with high uniformity are easily obtained. We fabricate an OFET by depositing pentacene as an active layer onto the electrodes. The OFET is operable at low voltages, with a threshold voltage of - 1.1 V and a subthreshold swing of 0.27 V decade(-1), values which are one order of magnitude lower than those obtained with a channel length of 75 μm.  相似文献   

13.
During the last few years, transition metal oxides (TMO) such as molybdenum tri‐oxide (MoO3), vanadium pent‐oxide (V2O5) or tungsten tri‐oxide (WO3) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long‐term stable p‐type doping of wide band gap organic materials, charge‐generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi‐transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO‐based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution‐based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed.  相似文献   

14.
In this work, novel chitosan/bacterial cellulose (CS/BC) nanofibrous composites reinforced with graphene oxide (GO) nanosheets are introduced. As cell attachment and permeability of nanofibrous membranes highly depend on their fiber diameter, the working window for successful electrospinning to attain sound nanofibrous composites with a minimum fiber diameter was determined by using the response surface methodology. It is shown that the addition of GO nanosheets to CS/BC significantly reduces the average size of the polymeric fibers. Their mechanical properties are also influenced and can be tailored by the concentration of GO. Fourier transform infrared spectroscopy reveals hydrogen bonding between the GO nanosheets and the polymer matrix. A decrease in the hydrophilicity of the electrospun nanofibers and their water vapor permeability with the addition of GO are also reported. The prepared nanofibrous composites are potentially suitable candidates for biomedical applications such as skin tissue engineering and wound dressing.  相似文献   

15.
This work demonstrates the potential of aligned electrospun fibers as the sole reinforcement in nanocomposite materials. Poly(vinyl alcohol) and epoxy resin were selected as a model system and the effect of electrospun fiber loading on polymer properties was examined in conjunction with two manufacturing methods. A proprietary electrospinning technology for production of uniaxially aligned electrospun fiber arrays was used. A conventional wet lay-up fabrication method is compared against a novel, hybrid electrospinning–electrospraying approach. The structure and thermomechanical properties of resulting composite materials were examined using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile testing. The results demonstrate that using aligned electrospun fibers significantly enhances material properties compared to unreinforced resin, especially when manufactured using the hybrid electrospinning–electrospraying method. For example, tensile strength of such a material containing only 0.13 vol% of fiber was increased by ∼700%, and Young’s modulus by ∼250%, with concomitant increase in ductility.  相似文献   

16.
In this report, a novel wound dressing material has been woven by electrospinning technique and tested for its various properties. For the nanofibre mat, a mixture of polyurethane (PU) and soy protein isolate (SPI) was electrospun in conjugation with zinc oxide nanoparticles (ZnO Nps) and ciprofloxacin hydrochloride (CipHCl) to produce fibrous mats viz. PU/SPI/ZnO and PU/SPI/CipHCl. An optimum ratio (1 : 1) of PU/SPI was used as suitable polymeric ratio in order to produce homogenous nanofibres without beads having an average diameter in the range of 300–350 nm. The electrospun nanofibre‐based mats were characterised using X‐ray diffraction, Fourier transform infrared spectroscopy, ultraviolet‐visible spectroscopy, thermogravimetric analysis and scanning electron microscope. The mechanical properties of the nanofibrous mats were tested using universal testing machine. The wettability analysis was done using the contact angle measurement based on the sessile drop test. This study revealed that the electrospun PU/SPI‐based nanofibres are non‐sensitizing, non‐allergic and non‐toxic and that it can be used as a peculiar wound healing material.Inspec keywords: polymer fibres, nanofibres, nanomedicine, biomedical materials, wounds, electrospinning, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, nanofabrication, X‐ray diffraction, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, thermal analysis, scanning electron microscopy, wetting, contact angle, toxicologyOther keywords: electrospun polyurethane nanofibres, soy protein nanofibres, wound dressing applications, electrospinning, nanofibre mat, soy protein isolate, zinc oxide nanoparticles, ciprofloxacin hydrochloride, X‐ray diffraction, Fourier transform infrared spectroscopy, ultraviolet‐visible spectroscopy, thermogravimetric analysis, scanning electron microscope, mechanical properties, universal testing machine, wettability, contact angle measurement, sessile drop test, nonsensitizing nanofibres, nonallergic nanofibres, nontoxic nanofibres, wound healing material, wavelength 300 nm to 350 nm, ZnO  相似文献   

17.
Bulk poly(m-phenylene isophthalamide) (PMIA) can achieve flexibility upon dissolution by a LiCl/dimethylacetamide co-solvent, but remains hydrophobic despite the occasional emergence of cis amide groups providing a weak negative charge. In this study, based on the significant surface differences between PMIA membranes processed by nanofiber electrospinning and casting, a series of chemical analyses, in-situ Au nanoparticle depositions, and dye-adsorption experiments revealed that more cis-configuration amide groups appeared on the surface of the electrospun PMIA membrane than on that of the cast membrane. Based on this surface difference, a strategy was proposed to improve the dyeing properties of PMIA by reversibly changing the cis/trans configurations of electrospun and cast membranes. The reversible chain-segment switch mechanism is a novel method for tuning the macroscale properties of polymer materials based on inherent molecular characteristics.  相似文献   

18.
One-dimensional (1D) 8-hydroxyquinoline metal complex nanomaterials exhibit distinctive characteristics that differ from those of their bulk counterparts. Owing to their small size, shape anisotropy, unique structures, and novel properties, these organometallic 1D nanostructures are promising candidates for various devices. This review highlights current progress in the synthesis of 1D 8-hydroxyquinoline metal complex nanomaterials and summarizes their optoelectronic properties and applications. The mainly synthetic strategies are divided into three categories, which include vapor phase growth, solution phase growth, and self-assembly. Special attention is paid to the formation mechanisms and the control measures for 1D nanostructured 8-hydroxyquinoline metal complexes. Other new methods such as template-based synthesis and electrospinning are briefly described. Merits and shortcomings of each synthetic strategy are simply discussed. Then, a variety of optoelectronic properties including luminescence, field emission, charge transport, photoconductivity, and photo-switching properties are reviewed, and their applications in optoelectronic devices, field emission, and templates are also surveyed. In the end, concise conclusions are provided, and personal perspectives on future investigations of 1D 8-hydroxyquinoline metal complex nanomaterials are proposed.  相似文献   

19.
目的 食品智能包装是一种能够感知食品品质变化并反馈给消费者的新型包装技术,通过总结静电纺丝纳米纤维在食品智能包装中的研究进展,为未来智能包装技术的发展提供借鉴。方法 介绍静电纺丝装置的原理及其影响因素,举例介绍适用于静电纺丝技术的各种生物基食品包装材料,总结静电纺丝技术在不同智能包装技术中的最新应用进展,并分析静电纺丝技术的优势。结论 静电纺丝纳米纤维具有孔隙率高、比表面积大、材料选择灵活、非热工艺等优点,将它与智能包装集成应用可提高智能包装膜的稳定性和灵敏性,进一步提高了智能包装膜的性能。  相似文献   

20.
Utilizing NaCl to increase the porosity of electrospun materials   总被引:1,自引:0,他引:1  
Electrospinning has emerged as a popular method for creating scaffolding materials used in tissue engineering applications to repair or replace damaged tissues. To become a viable scaffold material, however, pore sizes in electrospun materials must be increased to improve cell infiltration. Deposition of NaCl crystals during electrospinning was utilized to help overcome this obstacle. The NaCl crystals are released above the rotating collection mandrel and become incorporated into the poly(l-lactide) electrospun material. The NaCl then leaches out of the electrospun material creating larger pores: average pore diameter of 48.7 µm for PLLA-NaCl electrospinning versus 5.5 µm for PLLA alone electrospinning. Electrospun PLLA scaffolds with NaCl pores have a lower elastic modulus (8.05 MPa) and yield stress (349 kPa) and a higher yield strain (0.04) compared to their traditional counterparts (40.36 MPa, 676 kPa, and 0.0188). Decreased elastic modulus and yield stress would be beneficial to tissue engineering of elastic tissues including skin. The presence of NaCl pores did not significantly affect the cellular proliferation of MC3T3 cells but did allow for cell infiltration into the electrospun material. Therefore, the creation of large pores through NaCl leaching can significantly improve the performance of electrospun materials for tissue engineering applications by improving cellular infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号