首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study on the prediction of heat transfer coefficient and pressure drop of refrigerant mixtures is reported. Heat transfer coefficients and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis assuming evaporation in horizontal tubes. Results indicate that nucleate boiling is suppressed at qualities greater than 20% for all mixtures, and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8–10% increase in heat transfer coefficients. Some mixtures with large volatility difference exhibit as much as 55% reduction compared to R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32%) and reduced mass flow rates (23%). Other mixtures with moderate volatility difference exhibit 20–30% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall heat transfer coefficient of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10% in transport properties causes a change of less than 6% in heat transfer prediction.  相似文献   

2.
A simulation program, CYCLE11, which is useful for the preliminary evaluation of the performance of refrigerants and refrigerant mixtures in the vapour compression cycle is described. The program simulates a theoretical vapour-compression cycle and departures from the theoretical cycle that occur in a heat pump and in a refrigerator. The cycles are prescribed in terms of the temperatures of the external heat-transfer fluids with the heat exchangers generalized by an average effective temperature difference. The isethalpic expansion process is assumed. The program includes a rudimentary model of a compressor and a representation of the suction line and liquid line heat exchange. Refrigerant thermodynamic properties are calculated by using the Carnahan-Starling-DeSantis equation of state. Refrigerant transport properties are not included in the simulations. The program can generate merit ratings of refrigerants for which limited measured data are available. An example of simulation results stresses the need for careful application of simplified models and consideration for the assumptions involved.  相似文献   

3.
Thermally and calorically real gas modelling based on the Martin–Hou equation of state is assumed for pure and mixed refrigerants in the superheated vapour phase. It allows the constant-entropy reversible processes which take place within the work transfer components of ideal vapour compression cycles to be properly analysed. These processes, in fact, occur in a region of the Mollier diagram close to the saturated vapour curve where covolume and molecular forces alter the equation of state of an ideal gas. Thus, real gas effects are significant and cannot be ignored. They give a more accurate indication of the refrigerant end temperature associated with an isentropic compression as well as of the corresponding work exchanged and volumetric efficiency. In particular, it is shown that the gas compressibility effects play a ‘favourable’ role during the isentropic compression processes since they allow the work transferred to be reduced up to 10% for HFC-refrigerant 134a, and HFC-refrigerant mixtures 407C and 410A. But, at the same time, they play an ‘unfavourable’ role since they can reduce the compressor volumetric efficiency (i.e. refrigerant mass flow rate) and, consequently, the cooling (or heating) capacity of the vapour compression system up to 7%.  相似文献   

4.
An experimental study of the condensation of pure and mixed refrigerants of R22 and R114 inside a spirally grooved horizontal copper tube has been carried out. A double-tube counterflow condenser in the pressure range 3–21 bar and at a mass flow-rate 26–70 kg h−1 was used. The axial distributions of refrigerant, tube wall and cooling water temperatures, wall heat flux density and vapour quality are shown graphically. The variation of tube wall temperature around the circumference of the tube is also shown. The local Nusselt number depends on the molar fraction, whereas the average Nusselt number can be correlated by an equation which is modified from a previously established equation for pure refrigerants inside a horizontal smooth tube. The frictional pressure drop evaluated is correlated well by the Lockhart-Martinelli parameters and is independent of the concentration of the mixture.  相似文献   

5.
Convective boiling heat transfer coefficients of pure refrigerants (R22, R32, R134A, R290, and R600a) and refrigerant mixtures (R32/R134a, R290/R600a, and R32/R125) are measured experimentally and compared with Gungor and Winterton correlation. The test section is made of a seamless stainless steel tube with an inner diameter of 7.7 mm and is uniformly heated by applying electric current directly to the tube. The exit temperature of the test section was kept at 12°C ± 0.5°C for all refrigerants in this study. Heat fluxes are varied from 10 to 30 kW m−2 and mass fluxes are set to the discrete values in the range of 424–742 kg m−2 s−1 for R22, R32, R134a, R32/R134a, and R32/R125; 265–583 kg m−2 s−1 for R290, R600a, and R290/R600a. Heat transfer coefficients depend strongly on heat flux at a low quality region and become independent as quality increases. The Gungor and Winterton correlation for pure substances and the Thome-Shakil modification of this correlation for refrigerant mixtures overpredicts the heat transfer coefficients measured in this study.  相似文献   

6.
A composite plot relating evaporating temperature TEV, condensing temperature TCO, pressure ratio (PR) and theoretical Rankine coefficient of performance (COP)RR is presented for HFC134a. The theoretical performance of HFC134a has been comparatively assessed along with HCFC22, HFC134, HFC152a, HCFC124 and HCFC142b as alternatives to CFC12 by using the standard refrigeration parameters including pressure ratio, specific compressor displacement, theoretical Rankine coefficient of performance, shaft power per ton of refrigeration. A discussion of the practical implications of the choice of the alternatives to CFC12 is also presented.  相似文献   

7.
Six local composition models of the thermodynamic behaviour of mixtures are described. Using data from the literature and a non-linear regression analysis, a comparison of the predictive abilities of the models is undertaken for R12, R22, R134a and R125 with various oils. The Wilson and Heil equations provide the most consistent results, with the Heil equation providing a modest improvement over the Wilson model. Using a 95% confidence interval, the Heil equation predicted the behaviour of R12 with a paraffinic mineral oil to within 3.1%; its worst-case 2-σ error was 10.4% (R22 with a polyol ester oil), and its average 2-σ error for all of the mixtures was 6.2%. Using model parameters and error estimates from the regression analyses, pressure-temperature-concentration behaviour for these mixtures can be predicted for system design and simulation.  相似文献   

8.
The interaction parameter, k12, is determined from the experimental equilibrium data obtained by other authors. Vapour-liquid equilibria for binary mixtures of halocarbon refrigerants are predicted using the Redlich-Kwong-Soave equation of state. The mixtures considered are: R14-R23, R23-R12, R13-R12, R13-R11, R13B1-R22, R13B1-R152a, R22-RC318, R12-RC318, R12-R11.  相似文献   

9.
This paper presents a steady state simulation model to predict the performance of alternative refrigerants in vapour compression refrigeration/heat pump systems. The model is based on the NTU- method in analysing the heat exchangers following an elemental approach. The model extends its applicability to new refrigerants including hydrocarbons and uses a large database of REFPROP package for refrigerant properties. The main inputs to the model include the physical details of the heat exchangers, compressor efficiency, mass flow rates of heat transfer fluids and their inlet temperatures to the evaporator and the condenser, the pressure drops across the heat exchangers and the capacity of either the evaporator or condenser (in kW). The model results are validated with a wide range of experimental data of HCFC22 and propane (HC290) on a heat pump test facility for a number of parameters, e.g. coefficient of performance, condenser capacity, mass flow rate of the refrigerant and compressor discharge temperature. Although the model is currently tested for pure refrigerants using compact brazed plate (counter flow type) heat exchangers, it can also be applied to mixture of refrigerants as well as to other types of heat exchangers.

Résumé

Dans cet article, on présente un modèle de simulation de régime permanent pour prédire la performance des frigorigènes de remplacement dans les systèmes frigorifiques ou les pompes à chaleur à compression de vapeur. Fondé sur la méthode NTU- utilisée pour analyser les échangeurs de chaleur, ce modèle emploie une approche élémentaire. Ce modèle étend la méthode aux nouveaux frigorigènes, y compris deees hydrocarbures, et utilise une base de données étendue, celle de REFPROP, pour les propriétés des frigorigènes. Les principaux paramètres du modèle comprennent des détails physiques sur les échangeurs de chaleur, le rendement des compresseurs, et les débits massiques des fluides de transfert de chaleur et leurs températures à l'entrée de l'évaporateur ou du condenseur, la chute de pression à travers les échangeurs de chaleur et la puissance soit de l'évaporateur, soit du condenseur (exprimés en kW). Les résultats obtensus en utilisant ce modèle sont validés pour une large gamme de données expérimentales obtenus avec le HCFC22 et avec le propane (le HC290) sur un banc d'essai de pompe à chaleur et pour un certain nombre de paramètres, par exemple le coefficient de performance, la puissance du compresseur, le débit massique du frigorigène et la température du frigorigène à la sortie du compresseur. En ce moment, le comportement des frigorigènes purs utilisés dans des échangeurs de chaleur compacts à plaques brasées (de type contre-courant) est en train d'être étudié; le modèle peut également être appliqué aux mélanges de frigorigènes et à d'autres types d'échangeurs de chaleur.  相似文献   

10.
A mathematical model of an evaporator based on one-dimensional partial differential equations representing mass conservation, and tube wall energy has been formulated. These equations are then restructured and linked to a program data base of all major refrigerants and refrigerant mixtures. The result is a simulation model of an evaporator that is general and flexible. The model is tested over a wide range of operating conditions and a simple controller is implemented to demonstrate the effectiveness of the model for controller and systems design.

Résumé

On a établi un modèle mathématique d'un évaporateur basé sur des équations aux dérivés partielles unidimensionnelles qui représentent la conservation de masse et l'énergie de la paroi du tube. Ces équations ont été restructurées ensuite, puis reliées à une base de données sur les principaux frigorigènes purs et en mélanges. De cette manière, on obtient un modèle d'évaporateur d'application générale et souple. Ce modèle a été éprouvé dans des conditions de fonctionnement très variées et on a employé un système de régulation simple pour montrer l'efficacité du modèle pour la conception et la régulation des systèmes.  相似文献   

11.
The method of pulse heating for the study of thermophysical properties for oil/refrigerant solutions in a wide temperature range and for monitoring of an actual state of these systems has been developed. The regimes of linear heating and thermostabilization of the superheated probe are applied for solving our task. The objects of study are as follows: synthetic oils Mobil EAL Arctic 22, PLANETELF ACD22, XMPA, and solutions of carbon dioxide in these oils. The upper boundary, with respect to temperature, of the two-phase equilibrium region including the vicinity of the liquid–vapour critical curve of these systems, gas solubility in oils at various temperatures, short-time thermostability, and thermal conductivity of oils are considered. Inclusion of the thermally unstable states of a substance in investigation allows one to essentially extend the set of compared data.  相似文献   

12.
Previous work in developing environmentally acceptable alternatives to fully halogenated chlorofluorocarbons (CFCs) has concentrated almost exclusively on methane and ethane based compounds. A review of toxicity and boiling point data for a large variety of fluorine compounds reveals additional classes of compounds which may be suitable as refrigerants. Fluorinated derivatives of dimethyl ether and cyclopropane appear to have both low toxicity and suitable boiling points. They also have a relatively simple structure which means that they should have a reasonably good cycle efficiency. Propane based CFCs may also be useful if simpler compounds prove to be unacceptable. Specific compounds that warrant further investigation include bis-difluoromethyl ether (for R114), difluoromethyl dichlofluoromethyl ether (for R113), difluoromethyl fluoromethyl ether (for R11) and hexafluorocyclopropane (for R12). In addition, the compound trifluoroiodomethane may be a useful alternative to R13B1 in fire extinguishers. A cooperative programme of synthesizing and evaluating fluorinated derivatives of dimethyl ether and cyclopropane is recommended.  相似文献   

13.
Recent attention to depletion of stratospheric ozone, by chemicals containing bromine and chlorine, resulted in an international accord to halt their production. The most widely used refrigerants are among them. Chemical and equipment manufacturers mounted aggressive research and development programs to introduce alternative and transition refrigerants, associated lubricants and desiccants, and redesigned equipment. The already difficult criteria became even more complex, with subsequent linkage of chemical emissions from human activities to global climate change. The very successful response to protect the ozone layer has led some regulators and users to assume that ideal substitutes will be found. Such chemicals should be free of all environmental and safety concerns, be chemically and thermally stable, and perform efficiently. The analyses presented in this paper demonstrate that the outlook for discovery or synthesis of ideal refrigerants is extremely unlikely. Trade-offs among desired objectives, therefore, are necessary to achieve balanced solutions. The paper also shows that fragmented regulation of the chemicals involved, to address individual issues, jeopardizes the prospect of solving subsequently addressed problems. The paper reviews the history of refrigerants, their roles in ozone depletion and global climate change, and necessary trade-offs in refrigerant selections.  相似文献   

14.
A coaxial cylinder viscosimeter has been used to determine the pressure-viscosity coefficient of a pure refrigeration oil and of a mixture of refrigerant and oil at gauge pressures up to 15 MPa. The test fluid, Gargoyle Arctic oil 300, is a naphthenic-base oil. The refrigerant was R22, chlorodifluoromethane, which is a commercially important refrigerant. In a gap apparatus the refrigerant-oil mixture has been visually inspected at different pressures. Two different mechanisms are involved in the refrigerant-oil mixture: the change in solubility with pressure and the change in viscosity with refrigerant concentration. If the mixture is pressurized with excess refrigerant available then the concentration of refrigerant will increase with increasing pressure and therefore the viscosity will decrease. If the concentration is kept at a constant level then the viscosity will increase with pressure. The results from the cylinder viscosimeter showed that the viscosity increase with pressure for the mixture was almost the same as for the pure oil.  相似文献   

15.
Non-azeotropic refrigerant mixtures (NARMs) are investigated for a two-temperature level heat exchange process found in a domestic refrigerator-freezer. Ideal (constant air temperature) heat exchange processes are assumed. The results allow the effects of intercooling between the evaporator refrigerant stream and the condenser outlet stream to be examined in a systematic manner. For the conditions studied, an idealized NARM system will have a limiting coefficient of performance (COP) that is less than that of the best performing pure refrigerant component. However, for non-ideal heat exchange processes (gliding air temperature), the NARM-based system can have a higher limiting COP than a system running on either pure NARM component. Intercooling significantly affects the COP of NARM-based systems; however, depending on the location of ‘pinch points’ in the heat exchangers, only one intercooling heat exchanger may be needed to obtain a NARM's maximum refrigerator COP. The results are presented for mixtures of R22–R142b, R22–R123 and R32–R142b.  相似文献   

16.
This paper addresses the problem of absorption of refrigerant vapor in a stagnant layer of lubricant oil. The bulk motion of the solute is described in terms of apparent diffusion coefficients that encompass both molecular diffusion and possible macroscopic motion induced by liquid density instability and surface tension. In absorption of refrigerant mixtures, diffusion in the vapor and liquid phases are coupled with a thermodynamic model for interfacial equilibrium. Results are compared with experimental data available in the literature for absorption of several refrigerants in polyol ester oil (POE68). The adequacy of the formulation is assessed in the light of its basic assumptions and performance of the model.  相似文献   

17.
Alkylbenzenes have been found to be applicable in refrigeration systems with hydrofluorocarbons (HFCs). However, little thermophysical property data for HFC/alkylbenzene mixtures have been reported. In this study, the solubility of HFCs in alkylbenzenes, and the viscosity of HFC/alkylbenzene mixtures were measured. The solubility data were correlated with a cubic equation of state with a single adjustable parameter. The viscosity data were correlated with an empirical equation with a simple mixing rule. The solubility of HFCs in alkylbenzenes and viscosity of these mixtures may be predicted with these models.  相似文献   

18.
A number of correlation equations describing the performance characteristics of round tube and plate fin have been published in the open literature. However, many of these correlations are restricted to flat finned heat exchangers and a limited number of geometrical configurations. In this study, 28 heat exchanger samples were tested in an open circuit thermal wind tunnel over a velocity range of 1 to 20 m/s for a number of geometries. The geometrical variations include the number of tube rows, fin thickness and the spacing between fins, rows and tubes. Both flat and corrugated fins were tested and the results were correlated in terms of j and f factors as a function of Reynolds number and the geometrical parameters of the heat exchangers. An important feature of this correlation is the novel way in which the geometric parameters are expressed in the correlation. Ratios of these parameters are derived from consideration of the physics of the flow and heat transfer in the heat exchangers. This results in a more accurate and physically meaningful correlation which can be applied to a broader range of geometries. The correlation was validated against test data in the literature for round tube and plate fin with good agreement. It was found that the fin type affects the heat transfer and friction factor, and that the number of tube rows has a negligible effect on the friction factor. The number of tube rows effect was found to be influenced by the fin and tube geometries as well as the Reynolds number.Un certain nombre d'équations pour des caractéristiques du rendement des échangeurs de chaleur à tubes ronds plaques à ailettes ont été publiés dans le littérature. Cependant, dans bien des cas, ces corrélations se limitent aux échangeurs à ailette plate dans un nombre limité de configurations géométriques. Dans cette étude, 28 échangeurs de chaleur ont été testés utilisant une soufflerie à circuit ouvert avec une vitesse d'air de 1 à 20 m/s pour plusieurs formes géométriques. Les variations géométriques portaient sur le nombre de rangées de tubes, l'épaisseur des ailettes et la distance séparant des ailettes, des rangées et des tubes. Les ailettes plates et ondulées ont été testées et les corrélations en termes de facteurs j et f en fonction du nombre de Reynolds et les paramètres géométriques des échangeurs de chaleur. Un aspect important de cette corrélation est le façon originale d'exprimer des paramètres géométriques. Les rapports de ces paramètres sont obtenus à partir des flux et transferts de chaleur dans des échangeurs de chaleur. Ce procedé permet d'obtenir une corrélation plus précise et utilé qui s'applique à une gamme de formes géomátriques plus large. La corrélation a été validée en fonction des données concernant des échangeurs à tube et à plaque à ailettes dans la littérature: les données expérimentales et théoriques concordent bien. On a montré que le type d'ailette exerce une influence sur le transfert de chaleur et le facteur de frottement. Cependant, le nombre de rangées de tubes a un effet negligeable sur le coéfficient de frottement. On a démontré que l'effet nombre de rangées de tube est influencé par les géométries des ailettes et des tubes ainsi que par le nombre de Reynolds.  相似文献   

19.
The surface tension of the refrigerants R32, R125, R134a, R143a and R152a, as well as the binary refrigerant mixtures R32-R125, R32-R134a, R125-R134a, R125-R143a, R125- R152a, R143a-R134a and R134a-R152a, and the commercially available ternary mixtures R404A and R407C was measured across the temperature range from −50 to 60°C using a measuring unit based on the capillary rise method. Different formulations for calculation of the surface tension of the binary and ternary mixtures on the basis of the surface tension of the pure refrigerants were tested. With an approach based on mass proportions in the mixture, a good correspondence between the measured and calculated values was achieved.  相似文献   

20.
This study presents a prediction model for the condensation heat transfer characteristics of binary zeotropic refrigerant mixtures inside horizontal smooth tubes. In this model, both the vapor-side and liquid-side mass transfers are considered, and the high flux mass transfer correction factor is used to evaluate mass transfer coefficients. The model was applied to the binary zeotropic refrigerant mixture R134a/R123, which has a large temperature glide. Calculation results showed that the heat transfer degradation of R134a/R123 due to gradients in the mass fraction and temperature is considerable, and depends on the mass fraction of the more volatile component and the vapor mass quality of the refrigerant mixture. By comparison with experimental data, incorporating the present finite mass transfer model for the liquid film side into the calculation algorithm was shown to reasonably well predict the condensation heat transfer coefficients of binary refrigerant mixtures with the mean deviation of about 10.3%. In the present calculations, however, it was also found that the high flux mass transfer correction factor had only a slight effect on the condensation heat transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号