共查询到12条相似文献,搜索用时 0 毫秒
1.
F. Waliyar B. J. Ndunguru S. B. Sharma A. Bationo 《Nutrient Cycling in Agroecosystems》1992,33(3):203-208
One of the constraints to groundnut production in sandy soils of Niger is crop growth variability. In early 1989, a trial on the effect of lime and carbofuran on soil pH, Al toxicity, nematode population and groundnut yield was initiated to study crop growth variability. Groundnut was sown in the 1989 rainy season, followed by pearl millet (Pennisatum glaucum) in the 1989–90 dry season and again groundnut in the 1990–91 rainy, and dry seasons. In 1989 the carbofuran treatment increased the pod yield. Lime application did not change the pH and exchangeable Al+++ contents in the soil and did not increase groundnut yield. In the 1990–91 rainy and dry season, however, the application of 10 t ha–1 of lime increased pH, decreased exchangeable Al+++, improved crop growth and increased the yield of groundnut to the same level as was achieved by the carbofuran treatment. Application of lime did not affect the nematode population, which were reduced by the carbofuran.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Submitted as ICRISAT Journal Article No 1228(via Paris) 相似文献
2.
In pot and field experiments conducted in 1990 and 1991 on an acid sandy, phosphorus (P) deficient soil in Niger, West Africa, the effect of seed coating on seedling emergence, early growth and grain yield of pearl millet (Pennisetum glaucum (L.) R. Br.) was studied. Seeds of pearl millet were coated with different rates (0; 0.5; 1.0; 2.0; 5.0; 10.0 mg P seed–1) and types of P fertilizers (single superphosphate, ammonium dihydrogen phosphate; monocalcium phosphate, sodium dihydrogen phosphate and sodium triphosphate). Seedling emergence was generally reduced at coating rates higher than 0.5 mg P seed–1 and prevented with single superphosphate and sodium triphosphate at rates higher than 5 mg P seed–1. No correlation was found between the pH and osmomolity of the coatings and final emergence of millet seedlings. The most favourable effect on plant growth and P content was achieved with ammonium dihydrogen phosphate (AHP) as seed coating. This was attributed to the enhancement effect of ammonium on P uptake. Compared to the untreated control dry matter production at 20 days after planting (DAP) was increased by 280%, P content per plant by 330%, total biomass at maturity by 30% and grain yield by 45%. Although seed coating with AHP may be harmful to seedlings emergence, it represents a suitable method to enhance early growth and increase yield of pearl millet. 相似文献
3.
H. Hafner B. J. Ndunguru A. Bationo H. Marschner 《Nutrient Cycling in Agroecosystems》1992,31(1):69-77
Two field experiments were conducted in 1988 and 1989 on an acid sandy soil in Niger, West Africa, to assess the effect of phosphorus (P), nitrogen (N) and micronutrient (MN) application on growth and symbiotic N2-fixation of groundnut (Arachis hypogaea L.). Phosphorus fertilizer (16 kg P ha–1) did not affect pod yields. Addition of MN fertilizer (100 kg Fetrilon Combi 1 ha–1; P + MN) containing 0.1% molybdenum (Mo) increased pod yield by 37–86%. Nitrogen concentration in shoots at mid pod filling (72 days after planting) were higher in P + MN than in P – MN fertilizer treatment. Total N uptake increased from 53 (only P) to 108 kg N ha–1 by additional MN application. Seed pelleting (P + MoSP) with 100 g Mo ha–1 (MoO3) increased nitrogenase activity (NA) by a factor of 2–4 compared to P treatment only. The increase in NA was mainly due to increase in nodule dry weight and to a lesser extent to increase in specific nitrogenase activity (SNA) per unit nodule dry weight. The higher NA of the P + MoSP treatment was associated with a higher total N uptake (55%) and pod yield (24%). Compared to P + MoSP or P + MN treatments application of N by mineral fertilizer (60 kg N ha–1) or farmyard manure (130 kg N ha–1) increased only yield of shoot dry matter but not pod dry matter. Plants supplied with N decreased soil water content more and were less drought tolerant than plants supplied with Mo. The data suggest that on the acid sandy soils in Niger N deficiency was a major constraint for groundnut production, and Mo availability in soils was insufficient to meet the Mo requirement for symbiotic N2-fixation of groundnut. 相似文献
4.
M. D. A. Bolland 《Nutrient Cycling in Agroecosystems》1994,38(3):171-181
In a field experiment in a Mediterranean climate (474 mm annual rainfall, 325 mm (69%) falling in the May to October growing season) on a deep sandy soil near Kojaneerup, south-western Australia, the residual value of superphosphate was measured relative to freshly-applied superphosphate. The grain yield of five successive crops (1988–1992) was used to measure the residual value: barley (Hordeum vulgare), barley, oat (Avena sativa), lupin (Lupinus angustifolius), and barley. There was no significant yield response to superphosphate applied to the first crop (barley, cv. Moondyne). There were no results for the second crop (barley) due to weeds or the fourth crop (lupin) due to severe wind erosion which damaged the crop. The residual value of superphosphate was measured using grain yields of the third crop (oat, cv. Mortlock) for superphosphate applied one and two years previously, and the fifth crop (barley, cv. Onslow) for superphosphate applied one, two, three and four years previously. In February 1992, before sowing the fifth crop, soil samples were collected to measure bicarbonate-extractable phosphorus (P) (soil test P) which was related to the subsequent grain yields of that crop. This relationship is the soil test P calibration used to estimate the current P status of soils when providing P fertilizer recommendations.The residual value of superphosphate declined markedly. For the third crop (oat), it was 6% as effective as freshly-applied superphosphate one year after application, and 2% as effective two years after application. For the fifth crop (barley), relative to freshly-applied superphosphate, the residual value of superphosphate in successive years after application was 46%, 6%, 3% and 2% as effective. The soil has a very low capacity to sorb P, and P was found to leach down the soil profile. The largest yield for P applied one and two years previously in 1990, and two, three and four years previously in 1992, was 35 to 50% lower than the maximum yield for freshly-applied P.Soil test P was very variable (coefficient of variation was 32%) and mostly less than 8µg P/g soil. The calibration relating yield (y axis) to soil test P (x axis) differed for soil treated with superphosphate one year previously compared with soil treated two, three and four years previously. The top 10 cm of soil was used for soil P testing, the standard depth. P was leached below this depth but some of the P leached below 10 cm may still have been taken up by plant roots. Consequently soil test P underestimated the P available to plants in the soil profile. The soil test P calibration therefore provided a very crude estimate of the current P status of the soil. 相似文献
5.
P. C. Stevenson J. C. Anderson W. M. Blaney M. S. J. Simmonds 《Journal of chemical ecology》1993,19(12):2917-2933
A novel compound, 1-caffeoyl-4-deoxyquinic acid (1-CdQA) has been identified along with 3-caffeoylquinic acid (3-CQA) and 5-caffeoylquinic acid (5-CQA) (syn. chlorogenic acid) in the foliage ofArachis paraguariensis, a wild species of groundnut that is highly resistant to attack by the larvae ofSpodoptera litura. When neonate larvae were fed on diets treated with 3-CQA or 1-CdQA, their development was severely inhibited compared to larvae on untreated diets, and the effects were similar in nature and magnitude to those observed for larvae feeding on diets treated with 5-CQA, rutin, and quercetin. The effects of all the compounds were dose related, and their optimal concentration was approximately 3 mM, which corresponds to the total foliar concentration of both caffeoylquinic acids and quercetin diglycosides inA. paraguariensis. After 24 h, the development of third stadium larvae feeding on diets treated with 5-CQA, rutin and 1-CdQA was promoted compared to larvae on control diets, but after 96 hr larvae feeding on treated diets had gained significantly less weight than those on the control diets. 1-CdQA, 3-CQA, and quercetin dyglycosides (previously identified in the foliage ofA. paraguariensis) are considered to be valuable components in resistance of groundnuts toS. litura and may provide useful genetic markers in future breeding for resistance to this pest. 相似文献
6.
A. L. Singh Y. C. Joshi Vidya Chaudhari P. V. Zala 《Nutrient Cycling in Agroecosystems》1990,24(2):85-96
The pot experiment conducted in calcareous soil of Saurashtra, India showed that application of lime (20% CaCO3) and excess water (irrigation at –0.3 bar) to the soil enhanced chlorosis in groundnut leaves caused by induced deficiencies of iron, sulphur and zinc, which was recovered by applying agricultural grade chemicals containing iron, sulphur and zinc. This chlorosis caused 29.8 and 19.1% reduction in pod yield of groundnut due to lime and excess water, respectively in the untreated control pot and 17.1 and 9.6%, respectively in the pot treated with different chemicals.Application of iron sulphate, zinc sulphate, iron pyrite, gypsum, phospho-gypsum, elemental sulphur, wettable sulphur and Fe-EDTA decreased chlorosis and increased chlorophyll and carotenoid contents of leaves, uptake of Fe, S and Zn and pod yield of groundnut significantly. The foliar spray of 0.5% aqueous solution of iron sulphate, zinc sulphate and Fe-EDTA at 20, 35, 50 and 65 days after emergence (DAE) was more effective than their soil applications. The Fe-EDTA corrected only iron chlorosis, and gypsum, phosphogypsum and elemental sulphur only sulphur chlorosis. However, iron sulphate and iron pyrite corrected iron and sulphur and zinc sulphate corrected zinc and sulphur chlorosis. Among the soil amendments, application of iron sulphate and iron pyrite showed better responses to groundnut and showed higher Fe and S uptake than other treatments. The responses of gypsum, phosphogypsum and elemental sulphur were at par. The correlation study showed that pod yield of groundnut was negatively correlated with chlorosis and positively correlated with the chlorophyll and carotenoid contents in groundnut leaves. 相似文献
7.
The nitrogen, phosphorus and potassium requirement of sunflower was evaluated when the crop was grown on siliceous sands overlying clay in the south east of South Australia. Of the seven sites used in the investigation, significant seed yield responses to phosphorus were recorded at two, while at a further two sites seed yields were increased by potassium additions. Nitrogen applications did not significantly increase seed yields at any site but decreased seed yields at two. This lack of nitrogen response was attributed to the sites having been long term legume pastures prior to the sunflower crops.Oil concentrations of sunflower seed ranged from 40.6% to 45.3% between sites, but fertilizer treatment had no significant effect.Critical nutrient ranges for both soil (Colwell) extractable phosphorus and potassium were derived at maximum seed yield. These were 16–20 mg kg–1 for extractable phosphorus and 70–80 mg kg–1 for extractable potassium. 相似文献
8.
The effect of ferulic acid, an allelochemical produced by asparagus, on hyphal elongation and colonization of asparagus byG. fasciculatum was studied. Spore germination in vitro was not affected, but hyphal elongation decreased significantly with increasing ferulic acid concentration. In the greenhouse, mycorrhizal colonization of roots and growth of mycorrhizal asparagus decreased significantly with increasing ferulic acid concentration, while growth of nonmycorrhizal plants was not affected by ferulic acid. Although plant tissue phosphorus levels were not affected by ferulic acid or mycorrhizal status, ferulic acid inhibition of hyphal elongation in vitro and fungal root colonization in vivo suggests that production of ferulic acid by asparagus reduces the symbiotic effectiveness of the fungus and subsequently reduces plant growth.Michigan Agricultural Experiment Station Journal Article Number 13065. 相似文献
9.
Field experiments were conducted during wet season of 1980, 1981 and 1982 to determine the direct and residual effect of liming on yield and nutrient uptake of maize in moderately acid soils (pH -H2O; 5.0–5.4) at three locations viz Kontagora, Tumu and Yandev in the savanna zone of Nigeria. Maize crop was grown at five lime rates 0, 0.5, 1.0, 2.0 and 4.0 t ha–1 and two N sources (calcium ammonium nitrate and urea). Liming at a rate of 2 t ha–1 maintained high maize yield for three years after application at Kontagora and Yandev. At Tumu 1 t ha–1 was sufficient to get high yield of maize for three years. Higher rates of lime significantly depressed yield. Uptake of N, P and K was increased significantly with lime application upto 2 t ha–1 lime at Kontagora and Yandev but at Tumu it increased only upto 1 t ha–1. The response of P uptake to liming was higher in comparison to N and K uptake. Calcium and magnesium uptake responded upto 4 t ha–1 lime at Kontagora & Yandev and upto 2 t ha–1 at Tumu. The residual effect of liming lasted longer than 2 years. High lime rates reduced maize yields and crop nutrient uptake. 相似文献
10.
Field experiments were conducted during wet seasons (June to October) of 1974, 1976 and 1977 to determine the response of newly developed hybrids and varieties of grain sorghum to N fertilization under humid subtropical conditions of Pantnagar in India. In addition to the enhancement in flowering and maturity stages brought about by N application, it also resulted in increased plant dry weight, translocation coefficients, grain yield plant–1 and grain yield ha–1. Varietal differences existed with respect to their responses for yield and N uptake to N rates. Most of the entries responded up to 120 kg N ha–1. Hybrid CSH 5 utilized applied N more efficiently than other varieties.Publication No 1612 of GBPUA and T, Experiment Station, Pantnagar. 相似文献
11.
V. B. Ogunlela 《Nutrient Cycling in Agroecosystems》1988,17(2):125-135
Field trials were conducted during the 1980–82 seasons to study the response dryland sorghum to nitrogen and phosphorus fertilization in a ferruginous tropical soil. Treatments tested were factorial combinations of three rates of nitrogen (0, 60 and 120 kg N ha–1) and four rates of phosphorus (0, 11, 22 and 33 kg P ha–1). Grain and straw yields and yield components were enhanced by nitrogen fertilization in two out of three years. The optimum N rate for grain yield was 60 kg N ha–1 while straw yield responded up to 120 kg N ha–1. The optimum P rate for dryland sorghum was 11 kg P ha–1. Both N and P enhanced grain weight per head, grain number, test weight and tillering significantly but it was only N which enhanced 1000-grain weight and flag leaf area. Dry matter productin was increased by N fertilization but not by P. There were no significant N × P interactions for any of the parameters studied. Dryland sorghum response to N and P fertilization was influenced by season, time of planting and rainfall distribution. 相似文献
12.
Effects of ferulic acid,an allelopathic compound,on net P,K, and water uptake by cucumber seedlings in a split-root system 总被引:3,自引:0,他引:3
Since distribution of allelopathic compounds in soils is highly variable, injurious effects by such compounds should be related to the frequency of contact with roots. Experiments were conducted to determine how P, K, and water uptake of cucumber seedlings were affected as the fraction of roots in contact with ferulic acid (FA) was increased. Seedlings were grown in Hoagland's nutrient solution for 14 days and then transferred to 0.5 mM CaSO4 solution for 24 hr before being placed into a split-root culture system. The containers in the system were filled with 0.5 mM concentrations of KH2PO4 and CaSO4 or 0.5 mM concentrations of KH2PO4, CaSO4, and ferulic acid (FA). Net uptake of P by seedlings (milligrams per seedling) decreased in a curvilinear (concave) manner as the fraction of the roots in contact with FA increased. Net uptake of K (milligrams per seedling) and water (milliliters per seedling) by seedlings decreased linearly as the fraction of the roots in contact with FA increased. Net uptake of P, K, and water by seedlings was reduced 57, 75, and 29%, respectively, when the whole root system was exposed to FA. Net P and K uptake of roots (milligrams per gram root fresh weight) not in contact with FA decreased in a linear and curvilinear (convex) manner, respectively, as the fraction of roots in contact with FA increased. Net P and K uptake of roots in contact with ferulic acid increased in a linear and curvilinear (convex) manner, respectively. Net water uptake of roots (milliliters per gram root fresh weight) not in contact with FA increased in a curvilinear (concave) manner as the frequency of the roots in contact with FA increased. Net water uptake of roots in contact with FA did not show a trend. Transpiration (milliliters per square centimeter) was reduced in a linear manner as the fraction of roots in contact with FA increased. A very slight compensation by roots not in contact with FA for roots in contact with FA was observed for net water uptake rates. No compensation for P and K uptake rates was observed.Paper Mo. 12421 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7643. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned. 相似文献