首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to assess consumer preferences for storing and reheating frankfurters and to use this information to assess the effect of product formulation and storage times and temperatures on the viability of Listeria monocytogenes after reheating of frankfurters. Individual links were inoculated with about 8.0 log CFU per package of a five-strain mixture of the pathogen, vacuum sealed, and stored at 4 degrees C for 3 and 15 days and at -18 degrees C for 30 days. Frankfurters formulated with and without 2% added potassium lactate were heated to a surface temperature of 60, 70, 80, or 90 degrees C for up to 8 min by submersing the packages in a thermostatically controlled circulating water bath. Surviving bacteria were recovered and counted by rinsing the contents of each package with sterile peptone water and plating this solution directly onto modified Oxford selective agar plates. In general, the results revealed that about a 5-log unit reduction was achieved by reheating to a surface temperature of 70 degrees C for about 2 min or 80 or 90 degrees C for about 0.6 min regardless of storage conditions or formulation. Product formulation did not appreciably affect the viability of the pathogen after heating; there was no appreciable difference in the number of cells surviving the heat treatment in product prepared with or without potassium lactate. These findings can be used to establish reheating guidelines for consumers to ensure that frankfurters, which may become contaminated with low levels of L. monocytogenes prior to packaging and after unpackaging, are adequately reheated prior to consumption.  相似文献   

2.
To assess the prevalence of Listeria monocytogenes in vacuum-sealed packages of frankfurters, about 33,000 packages (1 lb each) were obtained by a third-party contractor from 12 volunteer commercial manufacturers over a 2-year period. The 12 producers, each of which contributed about 2,700 packages of frankfurters from one production run, comprised 9 large and 3 small plants located in eight U.S. Department of Agriculture/Food Safety and Inspection Service (USDA/FSIS) districts in 10 states. Five days after manufacture, 500 packages were sampled at the USDA/Agricultural Research Service (ARS) Eastern Regional Research Center (ERRC) in Wyndmoor, Pa., by the USDA/ARS package rinse method. At regular intervals during subsequent storage at 4 and 10 degrees C, an additional 200 packages were tested for the pathogen at each sampling point. From a statistical perspective, L. monocytogenes was not recovered from any of the products of nine of the producers, whereas the pathogen was recovered at rates of 1.5% (plant 367), 2.2% (plant 439), and 16% (plant 133) from the products of the remaining three plants. In total, 532 of 32,800 (1.6%) packages of frankfurters tested positive for the pathogen. The recovery rates did not change appreciably over time, there was no appreciable difference in L. monocytogenes recovery rates with respect to frankfurter storage temperature (4 or 10 degrees C), and the seasonality of manufacture had no influence on recovery rate. Molecular subtyping of multiple L. monocytogenes-positive isolates from each plant revealed that profile A (serotype 1/2a) was displayed by about 90% of the 1,105 isolates tested. However, in some cases it was also possible to recover more than one profile from a given plant. This study provides estimates of the prevalence, types, and viability of L. monocytogenes associated with commercially prepared frankfurters during extended refrigerated storage.  相似文献   

3.
Contamination of ready-to-eat foods, such as frankfurters, with Listeria monocytogenes, is a major concern that needs to be addressed in order to enhance the safety of these products. The objective of this study was to determine the effectiveness of combinations of antimicrobials included in the formulation of frankfurters against L. monocytogenes inoculated (10(3) to 10(4) CFU/cm2) on their surface after peeling and before vacuum packaging. In addition, the antilisterial effect of immersing the packaged products, prepared with or without antimicrobials, in hot (75 or 80 degrees C) water for 30 to 90 s was evaluated. Samples were stored at 4 degrees C for up to 120 days and periodically analyzed for pH and for microbial growth on tryptic soy agar plus 0.6% yeast extract (TSAYE) and PALCAM agar. Sodium lactate (1.8%; 3% of a 60% commercial solution) used alone inhibited growth of L. monocytogenes for 35 to 50 days, whereas when used in combination with 0.25% sodium acetate, sodium diacetate, or glucono-delta-lactone (GDL), sodium lactate inhibited growth throughout storage (120 days). Immersing packaged frankfurters in hot water (80 degrees C, 60 s) reduced inoculated populations of L. monocytogenes by 0.4 to 0.9 log CFU/cm2 and reduced its growth by 1.1 to 1.4 log CFU/cm2 at 50 to 70 days of storage in samples containing 1.8% sodium lactate alone. However, immersion of frankfurters containing no antimicrobials in hot water (75 or 80 degrees C) did not inhibit growth of the pathogen for more than 10 to 20 days, unless one frankfurter was placed per bag and heat treated for 90 s. These results indicate that the inclusion of 1.8% sodium lactate with 0.25% sodium acetate, sodium diacetate, or GDL in cured meat formulations may control L. monocytogenes growth during refrigerated (4 degrees C) storage. Additional studies are required to evaluate the effects of these combinations at abusive temperatures of storage, as well as on additional processed meat formulations and on the sensory quality and shelf life of products.  相似文献   

4.
Postprocessing contamination of cured meat products with Listeria monocytogenes during slicing and packaging is difficult to avoid, and thus, hurdles are needed to control growth of the pathogen during product storage. This study evaluated the influence of antimicrobials, included in frankfurter formulations, on L. monocytogenes populations during refrigerated (4 degrees C) storage of product inoculated (10(3) to 10(4) CFU/cm2) after peeling of casings and before vacuum packaging. Frankfurters were prepared to contain (wt/wt) sodium lactate (3 or 6%, as pure substance of a liquid, 60% wt/wt, commercial product), sodium acetate (0.25 or 0.5%), or sodium diacetate (0.25 or 0.5%). L. monocytogenes populations (PALCAM agar and Trypticase soy agar plus 0.6% yeast extract [TSAYE]) exceeded 10(6) CFU/cm2 in inoculated controls at 20 days of storage. Sodium lactate at 6% and sodium diacetate at 0.5% were bacteriostatic, or even bactericidal, throughout storage (120 days). At 3%, sodium lactate prevented pathogen growth for at least 70 days, while, in decreasing order of effectiveness, sodium diacetate at 0.25% and sodium acetate at 0.5 and 0.25% inhibited growth for 20 to 50 days. Antimicrobials had no effect on product pH, except for sodium diacetate at 0.5%, which reduced the initial pH by approximately 0.4 U. These results indicate that concentrations of sodium acetate currently permitted by the U.S. Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS) (0.25%) or higher (0.5%) may control growth of L. monocytogenes for approximately 30 days, while currently permitted levels of sodium lactate (3%) and sodium diacetate (0.25%) may be inhibitory for 70 and 35 to 50 days, respectively. Moreover, levels of sodium lactate (6%) or sodium diacetate (0.5%) higher than those presently permitted by the USDA-FSIS may provide complete control at 4 degrees C of growth (120 days) of L. monocytogenes introduced on the surface of frankfurters during product packaging.  相似文献   

5.
The safety of ready-to-eat meat products such as frankfurters can be enhanced by treating with approved antimicrobial substances to control the growth of Listeria monocytogenes. We evaluated the effectiveness of acidic calcium sulfate with propionic and lactic acid, potassium lactate, or lactic acid postprocessing dipping solutions to control L. monocytogenes inoculated (ca. 10(8) CFU/ml) onto the surface of frankfurters with or without potassium lactate and stored in vacuum packages at 4.5 degrees C for up to 12 weeks. Two frankfurter formulations were manufactured without (control) or with potassium lactate (KL, 3.3% of a 60% [wt/wt] commercially available syrup). After cooking, chilling, and peeling, each batch was divided into inoculated (four strains of L. monocytogenes mixture) and noninoculated groups. Each group was treated with four different dips: (i) control (saline solution), (ii) acidic calcium sulfate with propionic and lactic acid (ACS, 1:2 water), (iii) KL, or (iv) lactic acid (LA, 3.4% of a 88% [wt/wt] commercially available syrup) for 30 s. Noninoculated frankfurters were periodically analyzed for pH, water activity, residual nitrite, and aerobic plate counts (APCs), and L. monocytogenes counts (modified Oxford medium) were determined on inoculated samples. Surface APC counts remained at or near the lower limit of detection (<2 log CFU per frank) on franks with or without KL and treated with ACS or LA throughout 12 weeks at 4.5 degrees C. L. monoctogenes counts remained at the minimum level of detection on all franks treated with the ACS dip, which indicated a residual bactericidal effect when L. monocytogenes populations were monitored over 12 weeks. L. monocytogenes numbers were also reduced, but not to the same degree in franks made without or with KL and treated with LA. These results revealed the effectiveness of ACS (bactericidal effect) or LA (bacteriostatic effect) as postprocessing dipping solutions to inhibit or control the growth of L. monocytogenes on vacuum-packaged frankfurters stored at 4.5 degrees C for up to 12 weeks.  相似文献   

6.
The antilisterial effect of postprocess antimicrobial treatments on commercially manufactured frankfurters formulated with and without a 1.5% potassium lactate-0.05% sodium diacetate combination was evaluated. Frankfurters were inoculated (ca. 3 to 4 log CFU/cm2) with 10-strain composite Listeria monocytogenes cultures originating from different sources. The inocula evaluated were cells grown planktonically in tryptic soy broth plus 0.6% yeast extract (30 degrees C, 24 h) or in a smoked sausage homogenate (15 degrees C, 7 days) and cells that had been removed from stainless steel coupons immersed in an inoculated smoked sausage homogenate (15 degrees C, 7 days). Inoculated frankfurters were dipped (2 min, 25 +/- 2 degrees C) in acetic acid (AA; 2.5%), lactic acid (LA; 2.5%), potassium benzoate (PB; 5%), or Nisaplin (commercial form of nisin; 0.5%, equivalent to 5,000 IU/ml of nisin) solutions, or in Nisaplin followed by AA, LA, or PB, and were subsequently vacuum packaged and stored for 48 days at 10 degrees C. In addition to microbiological analyses, sensory evaluations were performed with uninoculated samples that had been treated with AA, LA, or PB for 2 min. Initial L. monocytogenes populations were reduced by 1.0 to 1.8 log CFU/cm2 following treatment with AA, LA, or PB solutions, and treatments that included Nisaplin reduced initial levels by 2.4 to >3.8 log CFU/ cm2. All postprocessing treatments resulted in some inhibition of L. monocytogenes during the initial stages of storage of frankfurters that were not formulated with potassium lactate-sodium diacetate; however, in all cases, significant (P < 0.05) growth occurred by the end of storage. The dipping of products formulated with potassium lactate-sodium diacetate in AA or LA alone--or in Nisaplin followed by AA, LA, or PB-increased lag-phase durations and lowered the maximum specific growth rates of the pathogen. Moreover, depending on the origin of the inoculum, this dipping of products led to listericidal effects. In general, differences in growth kinetics were obtained for the three inocula that were used to contaminate the frankfurters. Possible reasons for these differences include the presence of stress-adapted subpopulations and the inhibition of the growth of the pathogen due to high levels of spoilage microflora. The dipping of frankfurters in AA, LA, or PB did not (P > 0.05) affect the sensory attributes of the product when compared to the control samples. The data generated in this study may be useful to U.S. ready-to-eat meat processors in their efforts to comply with regulatory requirements.  相似文献   

7.
The utility of the U.S. Department of Agriculture/Agricultural Research Service (USDA/ARS) package rinse method for recovering Listeria monocytogenes from the surface of contaminated foods was validated in comparison to the standard USDA/Food Safety and Inspection Service (FSIS) product composite enrichment method and two other methods using frankfurters from a lot with a known package prevalence rate of approximately 16% for this pathogen. One hundred packages from this batch of naturally contaminated, commercially prepared frankfurters were examined as follows: (i) the package exudative fluid was removed and tested using the standard USDA/FSIS product composite enrichment method; (ii) approximately 5 to 7 portions of frankfurters were removed to obtain a 25-g composite of meat that was then processed using the standard USDA/FSIS product composite enrichment method: (iii) 50 ml of 0.1% peptone water was added to each package, and the USDA/ARS package rinse method was performed on the remaining contents; and (iv) after removing the rinse fluid, the solid contents remaining in each package were directly enriched using the USDA/FSIS product composite enrichment method. These four methods identified that 7, 6, 15, and 9 of the 100 packages tested positive for the pathogen, respectively. Although no single approach yielded a positive result for every package that tested positive for L. monocytogenes by any one of the four sampling strategies, the USDA/ARS package rinse method was appreciably (P < 0.05) better than either the package exudate enrichment method or the standard USDA/FSIS product composite enrichment method at recovering the bacterium. These findings validate the sensitivity and ease of use of the USDA/ARS package rinse method using naturally contaminated frankfurters and argue strongly for its adoption for routine screening of ready-to-eat products that are prone to surface contamination with undesirable microbes such as L. monocytogenes.  相似文献   

8.
Samples of smoked salmon of different hygienic quality were inoculated with low (6 cfu/g) and high (600 cfu/g) levels of a mixture of three strains of Listeria monocytogenes, after which they were vacuum-packed and stored at 4 degrees C for up to 5 weeks. L. monocytogenes grew well during storage in all the inoculated sample groups. Growth was, however, slightly faster in the fish with the better hygienic quality. The smoked salmon was still sensorically acceptable after 4 weeks. All three strains were found after 4 weeks in the fish with the better quality, while only two strains were recovered after the same time from the poorer quality salmon.  相似文献   

9.
The objective of this study was to compare the effects of pH on the growth kinetics of Listeria monocytogenes Scott A in static and agitated broths stored at 4 and 10 degrees C with and without a combination of 1.85% potassium lactate (PL) and 0.13% sodium diacetate (SDA) (3.3% of a 60% commercial solution, PURASAL P Opti.Form 4). The pH of brain heart infusion broth without (control) or with 1.85% PL + 0.13% SDA was adjusted to 5.5, 6.0, 6.5, and 7.5. L. monocytogenes Scott A was inoculated (at 10(2) CFU/ml) into pH-adjusted broth, which was stored at 4 or 10 degrees C with or without agitation. At pH 5.5, a listeriostatic effect was observed for the broth containing 1.85% PL + 0.13% SDA at 4 and 10 degrees C both with and without agitation. At pH 6.0, 1.85% PL + 0.13% SDA fully controlled the growth of L. monocytogenes Scott A in static broth at 4 degrees C for up to 20 days and significantly slowed the growth of the pathogen in agitated broth. At 10 degrees C, the growth of L. monocytogenes Scott A was significantly reduced by 1.85% PL + 0.13% SDA in agitated and unagitated broths. At pH 6.5, 1.85% PL + 0.13% SDA significantly suppressed the growth of L. monocytogenes Scott A at both 4 degrees C (P < 0.001) and 10 degrees C (P < 0.01). At pH 7.5, 1.85% PL + 0.13% SDA had a limited effect on the growth of L. monocytogenes Scott A in broth stored at 4 and 10 degrees C. At 4 degrees C, agitation decreased the lag time and increased the growth rate of L. monocytogenes Scott A at all tested pHs. A similar but less obvious trend was observed for broths stored at 10 degrees C. These results indicate that lactate-diacetate combinations effectively acted with low pH and temperature to inhibit the growth of L. monocytogenes Scott A.  相似文献   

10.
The fate of acid-adapted and nonadapted Listeria monocytogenes inoculated onto bologna slices (formulated with or without antimicrobials) was examined during storage and after exposure to in vitro gastric challenge. Bologna slices formulated with no antimicrobials (control), 3% sodium lactate (SL), or 1.8% SL plus 0.25% sodium diacetate (SD) were inoculated (2 log CFU/cm2) with a 10-strain composite of acid-adapted or nonadapted L. monocytogenes strains. Growth or survival of the two inocula on bologna was evaluated during vacuum-packaged storage (10 degrees C) for up to 36 days. Survival of previously acid-adapted or nonadapted L. monocytogenes on stored bologna exposed to simulated gastric fluid (adjusted to pH 1.0 with HCl) for 20, 40, and 60 min also was determined. As expected, inclusion of antimicrobials in the product formulation inhibited growth of L. monocytogenes during storage of vacuum-packaged bologna compared with growth on control samples. Acid adaptation of L. monocytogenes prior to product inoculation did not affect subsequent survival or growth on bologna or resistance to simulated gastric fluid (P > 0.05). Survival of L. monocytogenes exposed to simulated gastric fluid during storage increased with product age, growth phase of the cells, and possibly age of the cells, particularly for control samples (no antimicrobials), in which the pathogen grew uninhibited to approximately 6 log CFU/cm2 by day 8 of storage. Inhibition of L. monocytogenes growth on product formulated with antimicrobials was associated with only sporadic and small numbers of survivors following exposure of these samples to simulated gastric fluid, especially in samples stored longer. However, cell numbers in these treatment groups before the gastric challenge did not exceed 3.8 log CFU/cm2. Inhibition of growth on product with antimicrobials precluded detection of survivors resistant to the effects of simulated gastric fluid.  相似文献   

11.
Uncured turkey breast, commercially available with or without a mixture of potassium lactate and sodium diacetate, was sliced, inoculated with a 10-strain composite of Listeria monocytogenes, vacuum-packaged, and stored at 4 degrees C, to simulate contamination after a lethal processing step at the plant. At 5, 15, 25 and 50 days of storage, packages were opened, slices were tested, and bags with remaining slices were reclosed with rubber bands; this simulated home use of plant-sliced and -packaged product. At the same above time intervals, portions of original product (stored at 4 degrees C in original processing bags) were sliced and inoculated as above, and packaged in delicatessen bags, simulating contamination during slicing/handling at retail or home. Both sets of bags were stored aerobically at 7 degrees C for 12 days to simulate home storage. L. monocytogenes populations were lower (P<0.05) during storage in turkey breast containing a combination of lactate and diacetate compared to product without antimicrobials under both contamination scenarios. Due to prolific growth of the pathogen under the plant-contamination scenario in product without lactate-diacetate during vacuum-packaged storage (4 degrees C), populations at 3 days of aerobic storage (7 degrees C) of such product ranged from 4.6 to 7.4 log cfu/cm(2). Under the retail/home-contamination scenario, mean growth rates (log cfu/cm(2)/day) of the organism during aerobic storage ranged from 0.14 to 0.16, and from 0.25 to 0.51, in product with and without lactate-diacetate, respectively; growth rates in turkey breast without antimicrobials decreased (P<0.05) with age of the product. Overall, product without antimicrobials inoculated to simulate plant-contamination and product with lactate-diacetate inoculated to simulate retail/home-contamination were associated with the highest and lowest pathogen levels during aerobic storage at 7 degrees C, respectively. However, 5- and 15-day-old turkey breast without lactate-diacetate stored aerobically for 12 days resulted in similar pathogen levels (7.3-7.7 log cfu/cm(2)), irrespective of contamination scenario.  相似文献   

12.
The antimicrobial effects of zein coatings containing nisin, sodium lactate, and sodium diacetate against Listeria monocytogenes on turkey frankfurters at 4 degrees C were determined. Our objectives were to determine whether zein, nisin, lactate, and diacetate alone or in combination could control the growth of L. monocytogenes on full-fat turkey frankfurters at 4 degrees C and to determine whether lactate or diacetate had any synergistic effect on the activity of nisin. Turkey frankfurter pieces surface inoculated with L. monocytogenes strain V7 were treated with zein-ethanol-glycerol (ZEG), zein-propylene-glycol (ZPR), ethanol-glycerol (EG), propylene glycol (PR), nisin (N), sodium lactate (L), or sodium diacetate (D) alone or in combination. Over 28 days, treatment with N or D alone reduced L. monocytogenes counts on frankfurters by 6.6 or 6.3 log CFU/g, respectively. N-D treatment reduced L. monocytogenes by 6 log CFU/g. The zein solvents EG and PR reduced L. monocytogenes by about 5.6 and 5.2 log CFU/g, respectively, similar to the results obtained with ZEG and ZPR, which suggests that zein powder per se had no antimicrobial activity. After 28 days, ZEG-N-D, ZEG-N-D-L, ZPR-N-D, and ZPR-N-D-L yielded no detectable CFU. L alone was ineffective. No synergies were observed. N and D when used singly and the combinations of N-D, ZEG-N-D, ZEG-N-D-L, ZPR-N-D, ZPR-N-D-L, EG, and PR were effective as inhibitors of the growth of recontaminating L. monocytogenes cells on full-fat turkey frankfurters.  相似文献   

13.
Commercial cured ham formulated with or without potassium lactate and sodium diacetate was inoculated with Listeria monocytogenes and stored to simulate conditions of processing, retail, and home storage. The ham was sliced, inoculated with a 10-strain composite of L. monocytogenes (1 to 2 log CFU/cm2), vacuum packaged, and stored at 4 degrees C to simulate contamination following lethality treatment at processing (first shelf life). After 10, 20, 35, and 60 days of storage, packages were opened, samples were tested, and bags with remaining slices were reclosed with rubber bands. At the same times, portions of original product (stored at 4 degrees C in original processing bags) were sliced, inoculated, and packaged in delicatessen bags to simulate contamination during slicing at retail (second shelf life). Aerobic storage of both sets of packages at 7 degrees C for 12 days was used to reflect domestic storage conditions (home storage). L. monocytogenes populations were lower (P < 0.05) during storage in ham formulated with lactate-diacetate than in product without antimicrobials under both contamination scenarios. Inoculation of ham without lactate-diacetate allowed prolific growth of L. monocytogenes in vacuum packages during the first shelf life and was the worst case contamination scenario with respect to pathogen numbers encountered during home storage. Under the second shelf life contamination scenario, mean growth rates of the organism during home storage ranged from 0.32 to 0.45 and from 0.18 to 0.25 log CFU/cm2/day for ham without and with lactate-diacetate, respectively, and significant increases in pathogen numbers (P < 0.05) were generally observed after 4 and 8 days of storage, respectively. Regardless of contamination scenario, 12-day home storage of product without lactate-diacetate resulted in similar pathogen populations (6.0 to 6.9 log CFU/cm2) (P > 0.05). In ham containing lactate-diacetate, similar counts were found during the home storage experiment under both contamination scenarios, and only in 60-day-old product did samples from the first shelf life have higher (P < 0.05) pathogen numbers than those found in samples from the second shelf life. These results should be useful in risk assessments and for the establishment of "sell by" and "consume by" date labels for refrigerated ready-to-eat meat products.  相似文献   

14.
An experiment was conducted to determine the effects of the dark, firm, and dry (DFD) condition of beef on growth of the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium DT104, and Listeria monocytogenes Scott A in ground beef. Longissimus muscles from a DFD carcass (pH = 6.45) and normal carcass (N; pH = 5.64) were ground and samples obtained (100 and 0% DFD, respectively). Equal amounts of the 0 and 100% DFD ground samples were mixed to obtain 50% DFD samples. Inoculated 0, 50, and 100% DFD samples were packaged into oxygen-permeable overwrap and stored at 10 degrees C for E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A or at 22 degrees C for E. coli O157:H7. Growth characteristics of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A did not differ (P > 0.05) between 0 and 100% DFD. Results indicated that the DFD beef used in this study was no more susceptible to growth of E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes Scott A than N beef.  相似文献   

15.
This study compared three methods for the recovery of Listeria monocytogenes from commercially prepared and vacuum-packaged frankfurters that were inoculated with a five-strain mixture of this pathogen at averages of 22 and 20,133 CFU per package over three trials. The presence and levels of the pathogen were determined by (i) the U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS) product composite enrichment method, involving the selective enrichment of a 25-g composite of product and the subsequent plating of this product onto selective agar plates; (ii) the USDA Agricultural Research Service (ARS) product composite rinse method, involving the rinsing of a 25-g composite of product with 0.1% peptone water and the subsequent plating of a portion of the rinse fluid directly onto selective agar plates; and (iii) the USDA-ARS package rinse method, involving the use of 25 ml of 0.1% peptone water to rinse the entire contents of a package and the subsequent plating of a portion of the rinse fluid directly onto selective agar plates. For packages inoculated with 20,133 CFU. L. monocytogenes was recovered at a frequency (percentage of packages positive) of 100% by each of the three methods. The pathogen was recovered at efficiencies (percentages of recovery of L. monocytogenes) of 43 and 94% with the USDA-ARS product rinse method and the USDA-ARS package rinse method, respectively. For packages inoculated with 22 CFU, L. monocytogenes was recovered at frequencies of 17, 10, and 100% by the USDA-FSIS product composite enrichment method, the USDA-ARS product composite rinse method, and the USDA-ARS package rinse method, respectively. The pathogen was recovered at efficiencies of 20 and 95% with the USDA-ARS product composite rinse method and the USDA-ARS package rinse method, respectively. In a related study, the USDA-ARS package rinse method was the only method that detected the pathogen in 60 packages from each of five brands of frankfurters purchased from local grocery stores. These data establish that the USDA-ARS package rinse method is markedly more sensitive, as well as demonstrably more rapid and facile, than either the approved USDA-FSIS product composite enrichment method or the USDA-ARS product composite rinse method in determining the presence or absence of L. monocytogenes and establishing the levels of the pathogen that may be on the surface of ready-to-eat foods such as frankfurters.  相似文献   

16.
The survival and growth of Listeria monocytogenes and spoilage microflora during storage of fresh beef subjected to different decontamination treatments was studied. Fresh beef inoculated with a five-strain mixture of L. monocytogenes (5.18 log CFU/cm2) was left untreated (control) or was immersed (30 s) in hot water (HW; 75 degrees C), 2% lactic acid (LA; 55 degrees C), hot water followed by lactic acid (HW-LA), or lactic acid followed by hot water (LA-HW) and then stored aerobically at 4, 10, and 25 degrees C for 25, 17, and 5 days, respectively. Initial populations of L. monocytogenes were reduced by 0.82 (HW), 1.43 (LA), 2.73 (HW-LA), and 2.68 (LA-HW) log CFU/cm2. During storage, the pathogen grew at higher rates in HW than in control samples at all storage temperatures. Acid decontamination treatments (LA. HW-LA, and LA-HW) resulted in a weaker inhibition of L. monocytogenes (P < 0.05) at 25 degrees C than at 4 and 10 degrees C. In general, the order of effectiveness of treatments was HW-LA > LA > LA-HW > HW > control at all storage temperatures tested. In untreated samples, the spoilage microflora was dominated by pseudomonads, while lactic acid bacteria, Enterobacteriaceae, and yeasts remained at lower concentrations during storage. Brochothrix thermosphacta was detected periodically in only a limited number of samples. Although decontamination with HW did not affect the above spoilage microbial profile, acid treatments shifted the predominant microflora in the direction of yeasts and gram-positive bacteria (lactic acid bacteria). Overall, the results of the present study indicate that decontamination with LA and combinations of LA and HW could limit growth of L. monocytogenes and inhibit pseudomonads, which are the main spoilage bacteria of fresh beef stored under aerobic conditions. However, to optimize the efficacy of such treatments, they must be applied in the appropriate sequence and followed by effective temperature control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号