首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Retroviral insertional activation of the Fli-1 proto-oncogene is the first genetic event associated with the induction of erythroleukemias by the Friend murine leukemia virus (F-MuLV). Mutations within p53, which are only detected in cell lines established from transplanted tumors, have been previously shown to be associated with the immortalization of erythroleukemic cells in culture. In this study, we have demonstrated that primary erythroleukemic cells grown in liquid culture undergo rapid apoptosis independent of the stabilization of wild-type p53 protein. Further confirmation that the programmed cell death observed for liquid-cultured F-MuLV-induced primary erythroleukemic cells is largely p53 independent was provided by experimentation with a transgenic mouse line containing multiple copies of the dominant negative mutant p53Pro-193 allele. Erythroleukemic cells taken from tumor-bearing transgenic mice expressing high levels of the mutant p53Pro-193 undergo programmed cell death in culture in a manner that is largely identical to that observed for tumor cells derived from nontransgenic littermates. Furthermore, the rate of development of F-MuLV-induced erythroleukemias for both p53Pro-193-transgenic and nontransgenic littermates are similar. Moreover, cytogenetic analysis indicates that primary erythroleukemia cells are diploid, whereas chromosomal aberrations were observed in all established cell lines. These results are consistent with the notion that mutations within the p53 tumor suppressor gene affect genomic stability, subsequently leading to changes in gene expression that are associated with the immortalization of erythroid progenitor cells.  相似文献   

2.
In this paper the DNA damage and repair induced by the radiomimetic agent bleomycin are compared in murine Friend erythroleukaemia wild-type 707 cells and a thymidine kinase-deficient sub-clone BUF. Comparisons are made using results obtained from the alkaline comet assay and unscheduled DNA synthesis experiments. Further analysis to determine the fidelity of bleomycin-induced repair as indicated by mutagenesis to hypoxanthine-phosphoribosyltransferase deficiency was also conducted. Similar sensitivities to bleomycin treatments were observed in the two cell types with the comet assay, while similar levels of dose-dependent excision repair following bleomycin treatments were also detected in unscheduled DNA synthesis experiments. Comet assay and unscheduled DNA synthesis experimental results are in agreement. Survival and induced hypoxanthine-phosphoribosyltransferase mutant frequencies were observed to be unaffected by a thymidine kinase-deficiency in Friend erythroleukaemia cells. The results of this investigation suggest no overall difference in the repair capacities or the repair fidelity of Friend 707 relative to BUF cells following bleomycin treatments.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The c-fms gene encodes the receptor for the macrophage colony-stimulating factor, which plays a key role in the proliferation and differentiation of cells of the myelomonocytic lineage. In order to study the effects of overexpression of the macrophage colony-stimulating factor receptor in hematopoietic cells, a Harvey sarcoma virus-derived retroviral vector containing the murine c-fms cDNA was pseudotyped with Friend murine leukemia virus and inoculated into newborn DBA/2 mice. This viral complex induced monoclonal or oligoclonal leukemias with a shorter latency than that for Friend murine leukemia virus alone. Unexpectedly, 60% of the integrated fms proviruses had deletions at the 5' end of the c-fms gene. Sequence analysis of seven mutant proviruses indicated that the deletions always included the c-fms ligand binding domain and either occurred within the c-fms sequences, leaving the fms open reading frame unchanged, or joined VL30 sequences located at the 5' end of the parental retroviral vector to internal c-fms sequences, resulting in truncated fms proteins devoid of the canonical signal peptide. In contrast to all tyrosine kinase receptors transduced in retroviruses, no helper gag- or env-derived sequences were fused to the rearranged fms sequences. Viral supernatants isolated from hematopoietic tumors with viruses with deletions were able to transform NIH 3T3 cells as efficiently as parental fms virus, indicating that deletions resulted in constitutive activation of the c-fms gene. These oncogenic variants differ from those transduced in the Suzan McDonough strain of feline sarcoma viruses (L. Donner, L. A. Fedele, C. F. Garon, S. J. Anderson, and C. J. Sherr, J. Virol. 41:489-500, 1982). The high rate of c-fms rearrangement and its relevance in the occurrence of hematopoietic tumors are discussed.  相似文献   

13.
Cells lacking the beta1 integrin subunit or expressing beta1A with certain cytoplasmic mutations have poor directed cell migration to platelet-derived growth factor or epidermal growth factor, ligands of receptor tyrosine kinases (Sakai, T., Zhang, Q., F?ssler, R., and Mosher, D. F. (1998) J. Cell Biol. 141, 527-538). We investigated the effect of expression of beta1A integrins on lysophosphatidic acid (LPA)-induced migration of fibroblastic cells derived from beta1-null mouse embryonic stem cells. These cells expressed edg-2, a G-protein-linked receptor for LPA, as well as the related edg-1 receptor. Cells expressing wild type beta1A demonstrated enhanced cell migration across filters coated with gelatin or adhesive proteins in response to LPA, whereas beta1-deficient cells lacked LPA-induced cell migratory ability. Checkerboard analyses indicated that LPA causes both chemotaxis and chemokinesis of beta1-replete cells. Cells expressing beta1A with mutations of prolines or tyrosines in conserved cytoplasmic NPXY motifs, threonine in the inter-motif sequence, or a critical aspartic acid in the extracellular domain had low migratory responses to LPA. These findings indicate that active beta1A integrin is required for cell migration induced by LPA and that the cytoplasmic domain of ligated beta1A interacts with pathways that are common to both receptor tyrosine kinase and G-protein-linked receptor signaling.  相似文献   

14.
Interaction between erythropoietin (EPO) and its membrane receptor induces the proliferation and differentiation of erythroid progenitors. EPO has been shown to activate the JAK2-STAT5 pathway in various hematopoietic cell lines, although the physiological role of this pathway is unclear. We have previously shown that epidermal growth factor activates a chimeric receptor bearing the extracellular domain of the epidermal growth factor receptor linked to the cytoplasmic domain of the EPO receptor, resulting in proliferation of interleukin-3-dependent hematopoietic cells and erythroid differentiation (globin synthesis) of EPO-responsive erythroleukemia cells. In the present study, we introduced various deletion and tyrosine to phenylalanine substitution in the cytoplasmic domain of the chimeric receptor and expressed these mutant chimeras in an EPO-responsive erythroleukemia cell line, ELM-I-1. Mutant chimeric receptors retaining either Tyr343 or Tyr401 could activate STAT5, judged by tyrosine-phosphorylation of STAT5 and induction of CIS, a target gene of STAT5. These mutants were able to induce erythroid differentiation. However, a chimeric receptor containing both Y343F and Y401F mutations could not activate STAT5 nor induce erythroid differentiation. Thus, Tyr343 or Tyr401 of the EPO receptor are independently necessary for erythroid differentiation as well as STAT5 activation. Moreover, exogenous expression of dominant-negative STAT5 suppressed EPO-dependent erythroid differentiation. These findings suggest that STAT5 plays an important role in erythroid differentiation through the EPO receptor cytoplasmic domain.  相似文献   

15.
The role of hematopoietic growth factors in lineage commitment and differentiation is unclear. We present evidence that heterologous expression of an erythroid specific receptor allows granulocytic differentiation of a myeloid cell line. We have previously characterized a truncation mutant of the erythropoietin receptor (EpoR), which is associated with familial erythrocytosis (Blood 89:4628, 1997). This truncated EpoR lacks the distal 70 amino acids of the cytoplasmic domain. To study the functional role of this distal receptor domain, 32D cells, a murine interleukin-3 (IL-3)-dependent myeloid line, were transfected with the wild-type EpoR (32D/EpoR WT) or the truncated EpoR (32D/EpoR FE). 32D cells expressing either the full-length or truncated EpoR display equivalent proliferative rates in saturating concentrations of Epo. There is a dramatic difference in maturational phenotype between the two cell lines, however. The 32D/EpoR FE cells and mock transfected 32D cells have an immature, monoblastic morphology and do not express the primary granule protein myeloperoxidase. The 32D/EpoR WT cells, on the other hand, demonstrate granulocytic differentiation with profuse granulation, mature, clumped chromatin, and myeloperoxidase expression. There is no evidence of erythroid differentiation in 32D cells transfected with either the full-length or truncated EpoR. Treatment of the cells with the specific Jak2 inhibitor tyrphostin AG 490 inhibits myeloid differentiation driven by the distal EpoR. We conclude that: (1) the distal cytoplasmic domain of the EpoR is able to induce a specific myeloid differentiation signal distinct from mitogenic signaling, and (2) these data extend to myelopoiesis the growing body of evidence that the cellular milieu, not the specific cytokine receptor, determines the specificity of differentiation after cytokine receptor activation.  相似文献   

16.
Typical morphological features of surface structural alterations during Friend cells differentiation are described. Scanning electron microscopy (SEM) revealed that DMSO induction switched on cell alteration of the proerythroblast-like cells, possessing microvilli projections on cell membrane with some ruffles, to an advanced stage with a blebby surface. This was followed by the formation of a pear-like polarized cell separated into two zones by a narrow cytoplasmic bridge at the equatorial plane. The polarized cells showed a smooth surface and tended to disconnect into two unequal cells. The villous leukemic erythroblast has negatively charged sialic acid residues on the glycocalyx, available for latex hydrazide probe binding, while the blebby and polarized cells lack it. Tocopherol added to culture medium of DMSO-induced erythroleukemic cells prevented the formation of blebs and the polarization phenomena, without affecting hemoglobin synthesis. The tocopherol-treated cells contain available negative charges for latex hydrazide binding similar to uninduced Friend cells. Erythropoietin potentiated a repolarization ability and morphological alteration capacity to the tocopherol-treated cells and this was accompanied by a loss of glycocalyx-negative charges. At these growth conditions erythyropoietin induced a dose-dependent proliferation effect.  相似文献   

17.
A rat olfactory epithelium cDNA library was screened for olfactory receptor clones. One of the positively hybridizing cDNA clones was sequenced and found to encode a new member of the olfactory receptor superfamily. This cDNA, termed olp4, was used as a model of olfactory receptor for expression, both in vitro and in vivo. Expression of olp4, as well as of another previously cloned olfactory receptor (F5), was monitored by immunoprecipitation was a monoclonal antibody directed against a Flag peptide epitope tag, inserted at the N-terminus of the open reading frame, and a specific polyclonal antibody against a C-terminal peptide of olp4. Translation in vitro, followed by immunoprecipitation, showed a major olp4-specific band of 27-29 kDa. The olp4 and F5 polypeptides were found to be inserted into microsomal membranes as expected for integral membrane proteins. Expression in vivo of Flag-olp4 in Sf9 insect cells, using the baculovirus expression system, showed a specific polypeptide of the same size as the in vitro species, with an additional band of 34 kDa, which is most likely a glycosylated form. Fluorescence cytometry and immunohistochemical assays demonstrated the localization of the Flag-olp4 product on the cell surface of the infected host Sf9 cells, with the N-terminus and C-terminus in the proper orientation. Affinity chromatography was used for the partial purification of the olp4 polypeptide from infected Sf9 cells. The identification and purification of this expressed olfactory receptor polypeptide could open the way for further characterization and functional studies of the olfactory receptor superfamily members.  相似文献   

18.
Lymphocyte chemoattractant factor (LCF) is a polypeptide cytokine which induces both cell motility and activation of T lymphocytes. These LCF-induced events demonstrate an absolute requirement for the cell surface expression of CD4. Because many CD4-mediated T lymphocyte activation events have been demonstrated to require the association of the src-related tyrosine kinase p56lck with the cytoplasmic domain of CD4, we examined the role of p56lck in LCF-induced lymphocyte migration in a murine T cell hybridoma line expressing transfected human CD4. LCF induces the catalytic activity of CD4 associated p56lck at chemoattractant concentrations of cytokine. Hybridoma cells that express CD4 with cytoplasmic point mutations which uncouple the CD4-lck association lack both lck enzymatic activity and chemotactic responses to LCF. The enzymatic activity of lck however does not appear to be required for CD4-mediated migratory signal. First, the protein tyrosine kinase inhibitor herbimycin A blocked LCF-induced p56lck activation but had no effect on the LCF-induced motile response. Second, T cell hybridomas expressing a chimeric receptor combining the extracellular domain of human CD4 and murine p56lck which lacked the kinase domain had a normal LCF-induced motile response. We conclude from these observations that CD4-lck coupling is essential for LCF-induced T lymphocyte migration but the motile response is independent of the enzymatic activity of CD4-associated p56lck.  相似文献   

19.
20.
Stimulation of sensitive cells with erythropoietin results in rapid induction of protein tyrosine phosphorylation. Other than tyrosine phosphorylation of one chain of the erythropoietin receptor, the identities of the remaining tyrosine-phosphorylated proteins are undefined. In this report, we demonstrate that the stimulation of the erythropoietin-sensitive human UT7 cells by erythropoietin rapidly resulted in the appearance of phosphatidylinositol 3-kinase activity in anti-phosphotyrosine immunoprecipitates. Erythropoietin action was rapid, detectable after as early as 1 min stimulation, transient, returning to control level after 30 min stimulation and was observed using the erythropoietin concentrations able to stimulate the cell proliferation. Anti-(phosphatidylinositol 3-kinase) antibodies specifically immunoprecipitated 125I-erythropoietin bound to its receptor, strongly suggesting that phosphatidylinositol 3-kinase associated with a protein complex containing the activated erythropoietin receptor. To confirm this result, phosphatidylinositol 3-kinase was immunoprecipitated from erythropoietin-stimulated cells using mild conditions followed by Western analysis using anti-phosphotyrosine antibodies. Five tyrosine phosphorylated proteins were revealed: the cloned chain of the erythropoietin receptor, the regulatory subunit of phosphatidylinositol 3-kinase and three unidentified proteins of 111, 97 and 64 kDa. None of these tyrosine phosphorylated proteins was detected in anti-(phosphatidylinositol 3-kinase) immunoprecipitates from unstimulated cells. Thus, our results show that phosphatidylinositol 3-kinase associates with a tyrosine-phosphorylated protein complex containing the activated erythropoietin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号