首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以钨硅酸(H4SiW12O40)为掺杂剂,过硫酸铵(APS)为氧化剂,制得PANI/H4SiW12O40复合物。该复合物是以H4SiW12O40为核,以PANI为表层的新型聚合物,检测表明在室温下对氨气有较好的灵敏度。通过控制变量法,考察了不同制备因素对PANI/H4SiW12O40乳液稳定性及其复合材料气敏性能的影响,初步确定试验中各反应物的用量范围和实验条件:n(DBSA)/n(An)=2.0,n(APS)/n(An)=1.0,m(H4SiW12O40)/m(An)=3.0,聚合时间为16 h。  相似文献   

2.
不同酸掺杂聚苯胺的性能研究   总被引:2,自引:0,他引:2  
合成了盐酸(HC1)、氨基磺酸(NH2SO3H)、十二烷基苯磺酸(DBSA)掺杂的聚苯胺(PANI),探讨了酸用量、氧化剂用量、反应时间以及反应温度等因素对产物电导率的影响,并对这3种酸掺杂的聚苯胺的压片电阻和热稳定性进行了比较.结果表明:当c(HCl)=0.5 mol·L-1,反应时间为6 h,n(APS)∶n(An)为1.0,在1 ℃左右下所得HCl掺杂的PANI的电导率为1.98 S·cm-1;当c(NH2SO3H)=1.0 mol·L-1,反应时间为6 h,n(APS)∶n(An)为2.0,在2 ℃左右下所得NH2SO3H掺杂的PANI的电导率为0.26 S·cm-1;当c(DBSA)=1.0 mol·L-1,反应时间为8 h,n(APS)∶n(An)为2.0,在2 ℃左右下所得DBSA掺杂的PANI的电导率为0.98 S·cm-1.对于产物的固体压片电阻,HC1掺杂PANI最小为10 Ω,NH2SO3H掺杂PANI最大为120 Ω.而对于产物的热稳定性,NH2SO3H和DBSA掺杂的PANI具有较好的环境稳定性,要好于HC1掺杂的PANI.  相似文献   

3.
赵戈  傅相锴  马丽华 《精细化工》2006,23(6):540-544
用原位聚合法,以十二烷基苯磺酸(DBSA)/HC l混酸为掺杂剂,过硫酸胺(APS)为氧化剂,制备了聚苯胺/掺锑二氧化锡(ATO)导电复合材料。探讨了ATO用量对导电复合材料电导率的影响。在n(苯胺)∶n(APS)∶n(DBSA)=1∶1∶0.7,m(ATO)∶m(苯胺)=0.1∶1时,复合材料室温25℃的电导率最高可达8.35 S/cm,比通常方法合成的聚苯胺和nano-ATO的电导率分别提高约1至2个数量级。通过FTIR、XRD、SEM和TEM对目标物进行了表征,结果表明,苯胺优先在ATO纳米粒子表面聚合,形成聚苯胺包覆ATO的导电复合材料。  相似文献   

4.
乳液聚合法制备聚苯胺/聚乙烯醇电致变色材料   总被引:7,自引:1,他引:7  
马利  胡睿  甘孟瑜 《精细化工》2003,20(6):321-322,351
以十二烷基苯磺酸(DBSA)为掺杂剂,在非有机溶剂的两相体系中以聚乙烯醇(PVA)为成膜助剂,采用现场乳液聚合法合成了可直接用于制备电致变色膜的聚苯胺(PAn)/PVA乳液。研究了PVA含量、苯胺(An)与DBSA的量比、氧化剂过硫酸铵(APS)与An的量比及反应温度对膜的电致变色性、导电性的影响。实验结果表明:在w(PVA)=4 3%、n(An)∶n(DBSA)∶n(APS)=0 86∶1∶0 86、反应温度为8℃时,所制得的PAn/PVA乳液可直接制成具有良好电致变色性的自支撑膜(电致变色响应时间小于0 5s,电导率可达2 69×10-4S/m)。  相似文献   

5.
乳聚法制备聚苯胺复合膜及其电致变色性能研究   总被引:2,自引:0,他引:2  
钟平  王燕飞 《广东化工》2006,33(11):9-11,28
以十二烷基苯磺酸(DBSA)为掺杂剂,在非有机溶剂的两相体系中以聚乙烯醇(PVA)为成膜助剂,采用乳液聚合法合成了可直接用于制备电致变色膜的聚苯胺PAn/PVA乳液,用提拉成膜法制备了复合膜。研究了PVA含量、苯胺(An)与DBSA的量比、氧化剂过硫酸铵(APS)与An的量比及反应温度对膜的电致变色性、导电性的影响。结果表明:在w(PVA)为4.3%、n(An)∶n(DBSA)∶n(APS)=0.80∶1.00∶0.80、反应温度为5℃时,PAn/PVA复合膜具有较好的电致变色性及粘结性能。其本征态电化学活性的氧化峰电位范围出现在0.43V。  相似文献   

6.
以亚硫酸钠为磺化剂合成了磺基琥珀酸聚氧乙烯十二烷基混和双酯钠(ATCESS)。最佳工艺条件为:n(十二醇)∶n(顺酐)=1.1∶1.0于105℃单酯化反应4 h,得到琥珀酸十二烷基单酯;酯化产物在n(聚乙二醇200)∶n(单酯)=2.02∶1.0,140℃条件下反应2 h,得到产率为93%的双酯化产物;该产物在n(亚硫酸氢钠)∶n(双酯)=3.0∶1.0,加热介质温度为140℃下,反应6 h。产物物性分析表明,所合成的磺基琥珀酸聚氧乙烯十二烷基混和双酯钠(ATCESS)具有较好的表面活性。  相似文献   

7.
利用M-IOJ(机械搅拌、撞击-多孔板-喷射流水力空化)协同强化技术,强化聚乙酸乙烯酯乳胶合成工艺,提高了乳胶固含量,制备了综合性能优良的均聚乙酸乙烯酯乳胶,同时根据M-IOJ协同强化技术原理设计了M-IOJ协同强化聚乙酸乙烯酯乳胶合成设备示意图。通过单因素试验和响应面试验优化了聚合工艺。结果表明:M-IOJ协同强化聚乙酸乙烯酯乳胶合成工艺优化条件为:m(PVA)=5.4 g、过硫酸铵(APS/VAC)=1.2%、m(VAC)=100 g、m(H2O)=50~65 g、m(10%碳酸氢钠溶液)=2 g、M-IOJ复合强化转速750 r/min、M-IOJ复合强化压力0.08 MPa、M-IOJ复合强化时间19 min,固含量达到65.71%。M-IOJ协同强化聚乙酸乙烯酯乳胶综合性能优良。  相似文献   

8.
十二烷基苯磺酸催化合成乙酸苄酯的研究   总被引:1,自引:1,他引:0  
以苄醇和冰醋酸为原料,十二烷基苯磺酸(DBSA)为催化剂,合成了乙酸苄酯。研究了物料比、酯化时间、酯化温度和催化剂用量对酯化率的影响,确定了最佳工艺条件:n(冰醋酸)∶n(苄醇)=1∶6,酯化时间4.5 h,酯化温度40℃,DBSA用量为冰醋酸物质的量的3%时酯化率最高可达78.39%。  相似文献   

9.
以氨噻二唑肟乙酸(Ⅰ)与二硫化二苯并噻唑(Ⅱ)为原料,三苯基膦为还原剂,制备了第四代头孢菌素中间体氨噻二唑肟乙酸苯并噻唑硫酯(Ⅲ)。研究了溶剂、温度及原料投料比对该产物收率及质量的影响。结果表明,当以1,2-二氯乙烷作溶剂,n(Ⅰ)∶n(Ⅱ)∶n(三苯基膦)=1.0∶1.0∶1.0,反应在室温进行时,收率可达98.1%(基于Ⅰ计算),HPLC测定w(Ⅲ)=98.7%。在工艺改进的条件下,反应时间缩短,生产条件简化,收率得到较大提高,成本降低。  相似文献   

10.
以苯甲酸、3-溴丙烯和乙酸为原料,三氟化硼乙醚为催化剂合成2-苯基-1,3-二氧杂环-4-戊烯-乙酸甲酯,包括烯丙基苯甲酸酯的制备和烯丙基苯甲酸酯的环化。考察了烯丙基苯甲酸酯与乙酸的摩尔比、反应时间、温度、催化剂用量对反应的影响。结果表明,较佳的反应条件为:取0.05 mol烯丙基苯甲酸酯,n(烯丙基苯甲酸酯)∶n(乙酸)=1.0∶1.2(摩尔比),催化剂用量为5.0%,在室温(25℃)下反应10 h,所得产品的产率在87%以上。  相似文献   

11.
以苯甲酸、3-溴丙烯和乙酸为原料,三氟化硼乙醚为催化剂合成2-苯基-1,3-二氧杂环-4-戊烯-乙酸甲酯,包括烯丙基苯甲酸酯的制备和烯丙基苯甲酸酯的环化。考察了烯丙基苯甲酸酯与乙酸的摩尔比、反应时间、温度、催化剂用量对反应的影响。结果表明,较佳的反应条件为:取0.05 mol烯丙基苯甲酸酯,n(烯丙基苯甲酸酯)∶n(乙酸)=1.0∶1.2(摩尔比),催化剂用量为5.0%,在室温(25℃)下反应10 h,所得产品的产率在87%以上。  相似文献   

12.
以烯丙醇聚氧乙烯醚(APEG)、马来酸酐(MAH)、丙烯酸(AA)为主要单体,过硫酸铵(APS)为引发剂,甲基丙烯磺酸钠(SMAS)为链转移剂,共聚合成烯丙醇聚氧乙烯醚-马来酸酐型聚羧酸减水剂。通过正交试验,得到最佳合成工艺为:酸醚比n(AA)∶n(APEG)=3.5∶1,MAH与APEG摩尔比n(MAH)∶n(APEG)=1.25∶1,链转移剂用量m(SMAS)∶m(APEG)=2.0%,引发剂用量为m(APS)∶m(APEG)=1.0%,反应温度为80℃。混凝土测试结果表明,与同类产品相比,合成的聚羧酸减水剂掺量低,分散性好,坍落度损失小,抗压强度高,具有广泛的应用前景。  相似文献   

13.
首先用双氧水氧化木薯淀粉,然后用乙酸乙烯酯(VAc)对氧化淀粉进行接枝共聚改性,制备出木薯淀粉基木材胶粘剂。采用单因素试验法考察了木薯淀粉的氧化时间、双氧水掺量、过硫酸铵(APS)掺量以及VAc/木薯淀粉质量比对木薯淀粉基木材胶粘剂剪切强度和黏度的影响。研究结果表明:当氧化时间为1.0 h、V(双氧水)=3 m L、m(APS)=0.3 g和m(VAc)∶m(木薯淀粉)=1.00∶1时,相应的木薯淀粉基木材胶粘剂的粘接性能相对最好,其干态、湿态剪切强度分别为3.25、1.26 MPa。  相似文献   

14.
六水合三氯化铝催化合成乙酸环己酯   总被引:1,自引:0,他引:1  
施梅 《化工时刊》2006,20(10):33-34
以乙酸和环己醇为原料,六水合三氯化铝为催化剂催化合成了乙酸环己酯。在优化反应条件下,酯收率达78.8%。优化反应条件如下:n(乙酸)=200 mmol,n(乙酸)∶n(环己醇)=1.0∶1.5,催化剂用量为1.5 g,带水剂环己烷用量为10 mL,反应温度为106~124℃。实验结果表明催化剂催化性能高,反应条件温和,方法简单,收率优良。  相似文献   

15.
采用超声氧化聚合法,以自制的不同钒取代的磷钼杂多酸Hn+3PMo12-nVnO40(n=1、2、3)配合过硫酸铵(APS),合成三种聚苯胺基复合电容材料H4PMo11VO40/PANI、H5PMo10V2O40/PANI、H6PMo9V3O40/PANI,并通过元素分析、红外(IR)光谱、X-射线衍射图谱(XRD)和扫描电镜(SEM)对材料的成分、结构及表面形貌进行了表征。以复合材料在0.5 mol/L H2SO4电解液,-0.1~0.7 V电位范围下的循环伏安曲线所包围面积的大小为指标,重点研究了杂多酸与APS在氧化聚合苯胺过程中氧化作用的相对强弱,及二者配比对复合材料电学性能的影响。结果表明,按照原始反应物物质的量比,PMo11V∶APS∶An=1/2∶7/10∶1,PMo10V2∶APS∶An=1/3∶9/10∶1,PMo9V3∶APS∶An=1/2∶9/10∶1条件合成的复合材料电容特性较好,且APS为主要氧化剂,PMo12-nVn起辅助氧化的作用。  相似文献   

16.
利用水力空化与机械搅拌(H-M)协同强化技术,强化聚乙酸乙烯酯乳液合成工艺,提高了乳液固含量,制备了综合性能优良的均聚乙酸乙烯酯乳液,同时根据H-M协同强化技术原理设计了H-M协同强化聚乙酸乙烯酯乳液合成设备示意图。通过单因素试验和响应面试验优化聚合工艺。H-M协同强化聚乙酸乙烯酯乳液合成工艺,优化条件为,m(PVA)=5. 4%VAc、m(10%过硫酸铵)=12%VAc、m(VAc)=100 g、m(H_2O)=50%~65%VAc、m(10%碳酸氢钠溶液)=2%VAc、H-M复合强化转速756 r/min、H-M复合强化压力0. 082 MPa、H-M复合强化时间19. 5 min,固含量达到65. 67%。H-M协同强化聚乙酸乙烯酯乳液综合性能优良。  相似文献   

17.
以2-甲基-2-硝基丙醇为原料,经两步反应得到2-甲基-2-硝基-1-叠氮丙烷。产物结构经IR和NMR确证。通过对两步反应实验条件的考察,确定了以三乙胺为缚酸剂、三甲胺盐酸盐为催化剂,合成甲磺酸(2-甲基-2-硝基)丙酯的最优条件为:n(2-甲基-2-硝基丙醇)∶n(甲磺酰氯)∶n(三乙胺)∶n(三甲胺盐酸盐)=1.0∶1.2∶1.0∶0.05、二氯甲烷为溶剂,室温下反应2 h,甲磺酸(2-甲基-2-硝基)丙酯产率为93.3%;合成2-甲基-2-硝基-1-叠氮丙烷的最佳条件为:n[甲磺酸(2-甲基-2-硝基)丙酯]∶n(叠氮化钠)=1.0∶1.5,V(二甲基亚砜)∶V(水)=10∶1,在120℃下反应24 h,2-甲基-2-硝基-1-叠氮丙烷产率可达93.7%。  相似文献   

18.
在强酸性阳离子交换树脂存在下,以大茴香醇和乙酸为原料合成乙酸大茴香酯.考察了反应时间、原料配比和催化剂用量等因素对合成反应的影响,确定了较佳的工艺条件:n(大茴香醇)∶n(乙酸)=1.0∶3.0,大茴香醇为1.0 mol,带水剂甲苯为180 mL,强酸性阳离子交换树脂用量为16.0 g,101℃~105℃回流反应12 h.乙酸大茴香酯的平均收率可达到92.5%,产品纯度达99.3%.  相似文献   

19.
陈宝璠 《硅酸盐通报》2014,33(9):2223-2229
采用水溶液聚合法,以异丁烯磺酸钠(MAS)、丙烯酸(AA)和顺酐(MA)为主要合成原料,合成了一种线状MA-AA-MAS聚羧酸陶瓷分散剂.采用FT-IR手段对其官能团结构进行了表征.分别通过正交和单因素试验以确定各单体比例和研究各单体用量及聚合反应条件对陶瓷坯体料浆流动性能的影响.结果表明,合成该分散剂的最佳工艺条件为:n(MAS)∶n(AA)∶n(MA) =1.0∶3.0∶1.0、w(APS)=8%、聚合温度和时间分别为90℃和5h.当分散剂的掺量为0.35%(相对绝干料浆质量)时,料浆体系的黏度仅为78.2 mPa·s.  相似文献   

20.
以玉米淀粉为接枝骨架、聚乙烯醇(PVA)为保护胶体、过硫酸铵(APS)为引发剂、乙酸乙烯酯(VAc)和丙烯酸丁酯(BA)为接枝单体,采用接枝共聚法制备了改性淀粉木材胶粘剂。研究结果表明:当w(淀粉)=20%(相对于胶粘剂质量而言)、m(BA)∶m(VAc)=3∶1、m(引发剂)=0.32 g、V(氧化剂)=0.8 m L和m(PVA)=3.5 g时,改性淀粉木材胶粘剂的综合性能相对较好,其各项性能均达到HG/T 2727—2010标准中的指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号