首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study aims to synthesize a cocoa butter equivalent (CBE)‐structured lipid from a blend of illipe butter (IB) and palm midfraction (PMF) by means of enzymatic interesterification using Rhizomucor miehei sn‐1,3 specific lipase, Lipozyme® RM IM (Novozymes North America, Inc., Franklinton, NC, USA) as the biocatalyst. Physical and chemical attributes of the CBE and cocoa butter (CB) were analyzed. The synthesized CBE matched the triacylglycerol (TAG) profile range of a commercial CB and is therefore hypothesized to show similar physical and chemical characteristics to CB. The TAG profile, fatty‐acid constituents, melting and cooling behavior, polymorphism, and crystal morphology were determined using high‐performance liquid chromatography, gas chromatography, differential scanning calorimetry, X‐ray diffraction (XRD), and polarized light microscopy, respectively. Four enzymatically interesterified blends of IB:PMF at different weight ratios were analyzed for their TAG profiles, and a ratio of IB:PMF 10:3 (%, w/w) at 5% enzyme load and a reaction time of 30 min gave similar TAG results to CB. The TAG values of the IB:PMF 10:3 interesterified product (IP) were 1,3‐dipalmitoyl‐2‐oleoylglycerol at 19.1 ± 1.0%, 1‐palmitoyl‐2‐oleoyl‐3‐stearoylglycerol at 42.7 ± 1.0%, and 1,3‐distearoyl‐2‐oleoylglycerol at 29.9 ± 0.3%. The melting and the cooling profile of IP and CB showed no significant difference. XRD of IP and CB displayed similar dominant peaks at 4.6 Å, representing a β polymorph. Both CB and IP have similar granular spherulitic crystals.  相似文献   

2.
Enzymatic interesterification of palm stearin with coconut oil was conducted by applying a dual lipase system in comparison with individual lipase-catalyzed reactions. The results indicated that a synergistic effect occurred for many lipase combinations, but largely depending on the lipase species mixed and their ratios. The combination of Lipozyme TL IM and RM IM was found to generate a positive synergistic action at all test mixing ratios. Only equivalent amount mixtures of Lipozyme TL IM with Novozym 435 or Lipozyme RM IM with Novozym 435 produced a significant synergistic effect as well as the enhanced degree of interesterification. The interesterification catalyzed by Lipozyme TL IM mixed with thermally inactivated immobilized lipase preparations indicated that the carrier property may play an important role in affecting the interaction of two mixed lipases and the subsequent reactions. A dual enzyme system, consisting of immobilized lipases and a non-immobilized one (Lipase AK), in most cases apparently endows the free lipase with a considerably enhanced activity. 70% Lipase AK mixed with 30% immobilized lipase (Lipozyme TL IM, RM IM and Novozym 435) can achieve an increase in activity greater than 100% over the theoretical value when the reaction proceeds for 2 h. The co-immobilization action of the carrier of the immobilized lipases towards the free lipase was proposed as being one of the reasons leading to the synergistic effect and this has been experimentally verified by a reaction catalyzed by a Lipase AK-inactivated preparation. No apparently synergistic effect of the combinations of Lipozyme TL IM and RM IM was observed when the dual enzyme systems applied to the continuous reaction performed in a packed bed reactor. In brief, this work demonstrated the possibility of increasing the reaction rate or enhancing the degree of conversion by employing a dual lipase system as a biocatalyst.  相似文献   

3.
This study evaluated the physicochemical properties of palm mid‐fraction (PMF), refined bleached deodorized palm kernel oil (RBDPKO) and refined bleached deodorized palm stearin (RBDPS) as binary mixtures in terms of their fatty acid compositions (GC), triacylglycerols (HPLC), solid fat contents (p‐NMR), melting behaviors (DSC) and polymorphisms (XRD) for cocoa butter (CB) alternative formulations. All the PMF/RBDPKO and RBDPS/RBDPKO blends showed mixtures of short/long‐chain fatty acids with corresponding triacylglycerols. 10–70 % PMF in RBDPKO showed a eutectic effect between 20 and 30 °C. However, a monotectic effect was observed at 10–15 °C for 20–40 % PMF in RBDPKO and 40–80 % of RBDPS in RBDPKO. For PMF/RBDPS blends, a monotectic effect was observed at less than 30 °C. Broad endotherms at 20–38 °C were observed for 30–50 % RBDPS in RBDPKO which are closer to CB, with polymorphs of β′1 > β′2 ? β2 based on XRD analysis. 50–80 % PMF in RBDPS exhibited significantly higher contents of long‐chain fatty acids with the exception of stearic and lower constituents of monounsaturated triacylglycerols compared to CB. Broad endotherms were observed at 20–38 °C for 50–80 % PMF in RBDPS which are closer to CB, with β′1 ? β′2 > β2. Therefore, 20–40 % PMF in RBDPKO, 30–50 % RBDPS in RBDPKO and 50–80 % PMF in RBDPS could be used as CB substitutes because of their comparable physicochemical behaviors.  相似文献   

4.
The physicochemical properties of binary and ternary fat systems made of commercial samples of palm oil (PO) blended with anhydrous milk fat (AMF) and/or rapeseed oil (RO) were studied. Physical properties such as solid fat content by pulsed‐Nuclear Magnetic Resonance (p‐NMR), melting profile by differential scanning calorimetry (DSC), and polymorphism of the blends were investigated. Palm oil was then batch enzymatically interesterified for 27 h, using Lipozyme® TL IM as biocatalyst, and further blended with AMF and/or RO in the same way. The objective of the present work was to evaluate the effect of batch enzymatic interesterification (B‐EIE) of palm oil on physical characteristics of the investigated fat blends. For that purpose, iso‐solid diagrams have been constructed from p‐NMR data. It was shown that B‐EIE of palm oil modifies its melting behaviour, but also its polymorphic stability and miscibility with other fats. Under dynamic conditions, after B‐EIE, the non‐ideal behaviour (eutectic) detected at low temperatures in the ternary PO/AMF/RO system disappears in the corresponding EIE‐PO/AMF/RO. After static crystallization followed by a tempering, the hardness of palm oil is increased after B‐EIE, as well as the hardnesses of the blends containing this fat compared to the native one. Polymorphism stability of the binary and ternary fat systems is also modified after B‐EIE compared to the corresponding native systems.  相似文献   

5.
Chemical interesterification of different lipid materials has considerable potential for the production of a wide variety of special fats with improved functional and nutritional properties. The present study aimed to evaluate the chemical interesterification of blends of high-oleic sunflower oil (HOSO) and fully hydrogenated palm oil (FHPO) in the ratios (% w/w) of 80:20, 70:30, 60:40 and 50:50. The blends were characterized in triacylglycerol composition, melting point, solid fat content and crystallization behavior, and some applications in food products were suggested. The interesterification altered the solid fat content, melting point and crystallization isotherm of the samples, after the levels of trisaturated triacylglycerols decreased and disaturated–monounsaturated and monosaturated–diunsaturated triacylglycerol contents increased, due to the randomization of fatty acids. The modification in the triacylglycerol composition promoted greater miscibility between the HOSO and FHPO fractions, creating new application possibilities for the food industry.  相似文献   

6.
Blends [60:40, 70:30, and 80:20 (w/w)] of coconut oil (CO) and high oleic sunflower oil (HOSO) were interesterified using immobilized enzyme, Lipozyme® TL IM (Novozymes North America Inc., Franklinton, NC, USA). The structured lipids (SLs), referred to as interesterified products (IPs) IP60:40, IP70:30, and IP80:20, were compared to CO and HOSO for application in edible films. IPs were compared based on fatty acid profile, TAG molecular species, melting profile, moisture vapor permeability, mechanical properties, film transparency, density, and thickness. Interesterification increased oleic acid content at the sn-2 position of IPs. CO had 5.50 ± 1.67 mol% oleic acid at the sn-2 position, and when interesterified with HOSO (92.81 ± 1.10 mol% oleic acid) the amount of oleic acid significantly increased (p < 0.05) at the sn-2 position for IP60:40, IP70:30, and IP80:20 (33.86 ± 1.55, 27.34 ± 1.20, 20.61 ± 1.50 mol%), respectively. There was no significant difference between SLs, HOSO, and CO for water vapor permeability and density when applied to emulsion edible films. The HOSO film was significantly different (1.43 ± 0.27 AUmm?1) from the rest of the SLs and CO for film transparency. IP60:40 (2.20 ± 0.22 AUmm?1) decreased the opacity and was significantly different from HOSO and IP80:20 (2.88 ± 0.08 AUmm?1). Tensile strength of IP60:40 was 0.39 ± 0.17 MPa which was significantly different from IP70:30, IP80:20, and HOSO. The elongation at break was significantly different for HOSO and IP60:40. IP60:40 could be used to further investigate the use of SL in edible film for sports nutrition products.  相似文献   

7.
This study investigated the physicochemical properties of ternary mixtures of palm mid-fraction (PMF):refined bleached deodorized palm kernel oil (RBDPKO):refined bleached deodorized palm stearin (RBDPS) for cocoa butter substitute (CBS). Fatty acid constituents, triacylglycerol constituents, solid fat contents (SFCs), melting behavior, polymorphism and crystal morphology were determined using gas chromatography (GC), high-performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), pulsed nuclear magnetic resonance (p-NMR), X-ray diffraction (XRD) and polarized light microscopy (PLM), respectively. Eight blends of various ratios of ternary mixtures were investigated based on the previously studied binary fat mixtures. The composition of palmitic (P) and oleic (O), POP, and crystal morphology (size and shape) of the PMF/RBDPKO/RBDPS [14.9/59.6/25.5 (%w/w)] mixture were comparable to cocoa butter (CB), while its melting profile (18.5 and 37 °C), SFC at 20 °C and polymorphism were different from CB. The iso-solid diagrams of the mixture displayed a monotectic effect at 20–25 °C. Therefore, the 14.9/59.6/25.5 PMF/RBDPKO/RBDPS mixture could be used as a CBS in confectionery fillings because of the crystal morphology and monotectic behaviors comparable to those of CB.  相似文献   

8.
Drug formulations based on lipids can enable a significantly better delivery of a pharmaceutically active substance and thus enhance their bioavailability. However, natural fats and oils usually have properties, which do not allow their direct use for drug delivery. Therefore, we have modified palm kernel oil (PKO) and shea butter (SB) via lipase‐catalyzed transesterification using either glycerol – to create a diglyceride‐enriched lipid – or using hexanoic acid via acidolysis – to alter their fatty acid composition – and hence to improve drug solubility of Celecoxib serving as model compound. The most suitable enzyme was immobilized Thermomyces lanuginosus lipase (Novozyme TL IM). The solubility of Celecoxib as determined in SB, pharmaceutical grade SB, glycerol‐modified SB, hexanoic acid‐modified SB, PKO, glycerol‐modified PKO, and hexanoic acid‐modified PKO. Incorporation of one or two equivalents of hexanoic acid enabled higher Celecoxib solubilization than the diglyceride rich oil. Although structured SB and PKO (15.8 ± 0.4 mg mL?1) do not differ significantly (p < 0.05) as per the amount of Celecoxib dissolved, the use of the modified oils enhanced Celecoxib solubility in SB (15.5 ± 1.3 mg mL?1) in comparison to shea butter (7.9 ± 0.5 mg mL?1). The lipase‐catalyzed modification also improved the miscibility of the oils with surfactants such as Tween 20 and resulted in reduced droplet sizes (<70 nm at oil/surfactant ratios of 1:2 and 1:1) and reduced polydispersity index values of the resulting emulsions. Practical Application: The structured triglycerides synthesized in this work on the basis of natural shea butter oils could function as suppository bases and oil phase in oral and parenteral lipid‐based formulations for improving the solubility and absorption of poorly soluble drugs. As various lipases with distinct selectivity are available for the enzymatic synthesis of structured triglycerides and useful for this purpose, further tailor‐designed formations should be accessible. With the aim of developing novel lipid drug delivery matrices palm kernel oil (PKO) and shea butter (SB) were modified via lipase‐catalyzed transesterification to alter their fatty acid composition and hence to improve drug solubility of the model compound Celecoxib. Incorporation of one or two equivalents of hexanoic acid enabled better Celecoxib solubilization than the diglyceride‐rich oil. Overall, the successful modification process yielded structured lipids with promising miscibility with selected surfactants and potential enhancement of Celecoxib solubility and thus represents a promising approach for the development of novel safe and effective lipid‐based delivery systems.
  相似文献   

9.
10.
Glycerolysis of palm and palm kernel oils were carried out using commercial lipases from Candida antarctica (Novozym 435) and Mucor miehei (Novozym 388) as catalyst (500 units lipase/g oil) at 40°C and with an oil:glycerol molar ratio of 1:2 in a solvent-free system. Novozym 435 catalyzed the glycerolysis of palm and palm kernel oils giving reaction products in similar compositions. Partial acylglycerols contents of the glycerolysis products obtained from palm and palm kernel oils were 64% (wt) and 66% (wt), respectively. However, partial acylglycerols contents of the glycerolysis products obtained from palm and palm kernel oils conducted with Novozym 388 as catalyst at the same conditions were 44% (wt) and 56% (wt), respectively. On the other hand, free fatty acid contents of the glycerolysis products of palm and palm kernel oils obtained using Novozym 388 were higher, 25-30% (wt), than those obtained by Novozym 435, 4-5% (wt). The monoacylglycerols fraction with the highest content of oleic acid, 62.7% (wt), was obtained from the palm kernel oil glycerolysis reaction catalyzed by Novozym 435.  相似文献   

11.
Glycerolysis of palm and palm kernel oils were carried out using commercial lipases from Candida antarctica (Novozym 435) and Mucor miehei (Novozym 388) as catalyst (500 units lipase/g oil) at 40°C and with an oil:glycerol molar ratio of 1:2 in a solvent-free system. Novozym 435 catalyzed the glycerolysis of palm and palm kernel oils giving reaction products in similar compositions. Partial acylglycerols contents of the glycerolysis products obtained from palm and palm kernel oils were 64% (wt) and 66% (wt), respectively. However, partial acylglycerols contents of the glycerolysis products obtained from palm and palm kernel oils conducted with Novozym 388 as catalyst at the same conditions were 44% (wt) and 56% (wt), respectively. On the other hand, free fatty acid contents of the glycerolysis products of palm and palm kernel oils obtained using Novozym 388 were higher, 25–30% (wt), than those obtained by Novozym 435, 4–5% (wt). The monoacylglycerols fraction with the highest content of oleic acid, 62.7% (wt), was obtained from the palm kernel oil glycerolysis reaction catalyzed by Novozym 435.  相似文献   

12.
Semisolid fats obtained from oils and fats through enzymatic interesterification have interesting applications. The effect of certain reaction parameters (enzyme concentration, moisture content, reaction time, substrate ratio, temperature, and agitation level) over the enzymatic interesterification of fully hydrogenated soybean oil (FHSO) and refined soybean oil (SO) using two immobilized enzyme types (Lipozyme RM IM and Lipozyme TL IM), was studied with a fractional factorial design (FFD). The reaction products were analyzed with respect to melting point (mp), by-products content and triacylglycerols (TAG) composition. It was found that substrate ratio, reaction time, and their interaction presented the most significant contributions to mp, varying this from 43.4 to 61.5 °C. The highest contributions to by-product content were presented by time and its interaction with the amount of molecular sieves, mainly for Lipozyme TL IM. Through the models obtained, theoretical conditions to achieve minimal by-product generation and mp were found, being 5.0 % (w/wsubst.) of any of both lipases, 24 h, 70:30 (oil:fat,  % w/w), 65 °C, 230 rpm, and absence of molecular sieves. Regression models for TAG groups as a function of significant factors and interactions were constructed, offering useful information to establish the reaction conditions for obtaining a product with a target mp or chemical composition.  相似文献   

13.
刘英 《安徽化工》2005,31(1):16-17
棕榈仁油和椰子油成分大致相似。通过成品分析,采用棕榈仁油制成的皂基质量指标符合标准要求,完全可以代替椰子油使用,同时能够提高经济效益。  相似文献   

14.
Minor compounds such as tocopherols and phytosterols in vegetable oils play an important role in their stability and nutritional value. This study monitored the effects of chemical interesterification on the levels of tocopherols, tocotrienols, phytosterols and phytosterol oxidation products (POPs) in an olive oil and palm stearin blend (50/50 w/w). Tocopherols and tocotrienols were dominated by α-tocopherol (192 ppm) and γ-tocotrienol (70 ppm) and decreased during interesterification. Among the tocopherols, δ-tocotrienol had the highest decrease (35%) at 120 °C. During interesterification at 90 and 120 °C, total sterol content in the oil blend (509 ppm) declined slightly, by 3 and 5%, respectively. Phytosterols were esterified at a higher level at 120 °C (7%) than at 90 °C (4%) during this process. Distribution of fatty acids in the esterified sterols followed the fatty acid composition of the oil blend. Total POP content was 4.3 ppm, and remained generally unchanged during interesterification. Among the nine POPs tentatively identified by their mass spectra, 6-hydroxysitostanol and 6-hydroxycampestanol dominated in the oil blend and in the interesterified product. The formation pathways of these saturated di-hydroxyphytosterols have yet to be identified. Although the interesterification process comprised several treatments, there were only minor losses of tocopherols and phytosterols and virtually no increases in the POPs.  相似文献   

15.
论述了产品收率低、溶剂分提效果欠佳、巧克力生产脱模困难等问题的解决办法。  相似文献   

16.
A blend of palm stearin and soybean oil (70/30, wt%) was modified by chemical interesterification (CIE) and enzymatic interesterification (EIE), the latter batch-wise (B-EIE) and in continuous (C-EIE). Better oil quality, mainly in terms of acidity, free tocopherol and partial acylglycerol content, was obtained after EIE. The clear melting point after any interesterification process was similar and about 9 °C lower as result of the modification in the TAG profile, which approaches the calculated random distribution. Interesterification changed the SFC profile significantly. For the fully refined interesterified blends, the SFC profile was similar and clearly different from the starting blend. Interesterification decreased the content of solids at temperatures >15 °C and increased the content of solids at temperatures <15 °C. This increase was less remarkable after C-EIE, suggesting that full randomization was not achieved in the used conditions, probably caused by a too short residence time of the oil in the enzymatic bed. During B-EIE, variations in SFC with time, principally at low temperatures, were still observed although the TAG composition was stable. At low temperatures, the reaction rate calculated from SFC was very low, confirming an important effect of the acyl migration on this parameter.  相似文献   

17.
Composition of Coconut Testa,Coconut Kernel and its Oil   总被引:1,自引:0,他引:1  
Testa, a by-product from the coconut processing industry is getting wasted. A study was carried out to utilize testa as a source of edible oil. The composition of the oils from testa of wet coconut (WCT) and copra (CT) were evaluated and compared with wet coconut whole, copra whole, wet coconut white kernel and copra white kernel. The samples had fat as a major component ranging from 34 to 63 %. Oils had 90–98.2 % triacylglycerols, 1–8 % diacylglycerols and 0.4–2 % monoacylglycerols. The triacylglycerol composition of oil from WCT had decreased trilaurin and increased triolein. Lauric acid content of CT was 40.9 % and WCT was 32.4 % whereas other oils were 50–53 %. Oils from testa were richer in monounsaturates and polyunsaturates than other coconut oil samples. The phenolics and phytosterols content were 0.2–1.9 % and 31–51 mg%, respectively. The total phenolic acids and tocopherol content of oils from CT (313.9 μg%, 22.3 mg%) and WCT (389.0 μg%, 100.1 mg%) were higher than other samples (94.8–291.4 μg%, 2.5–6.7 mg%). These studies indicated that the oil from coconut testa contained more of natural antioxidants such as tocopherols, tocotrienols and phenolics compared to coconut kernel oil and may confer health benefits.  相似文献   

18.
The chemical interesterification of blends of soybean (SO) and fully hydrogenated crambe oil (FHCO) in the ratios of 80:20, 75:25, 70:30, 65:35, and 60:40 (w/w), respectively, was investigated. FHCO is a source of behenic acid. The blends and the interesterified fats were analyzed for fatty acid and triacylglycerol composition, regiospecific distribution, slip melting point, solid profile, and consistency. The regiospecific analysis of the TAG indicated random insertion of saturated fatty acids at sn-2 of the glycerol of the interesterified blends with more significant alterations at sn-2 than at sn-1 and sn-3. The gradual addition of FHCO increased the solid fat content and the slip melting point. The chemical interesterification formed new TAG facilitating the miscibility between SO and FHCO. The 70:30 interesterified blend was suitable for general use, 60:40 for use as a base stock. At 35 °C, the 65:35 interesterified blend showed suitable plasticity for use in products with fat contents below 80 %. FHCO, rich in behenic acid, is not associated with increased total cholesterol and LDL cholesterol, and it can be used as a low trans fat. FHCO is not associated with increased total cholesterol and LDL cholesterol, and it can be used as a low trans fat alternative.  相似文献   

19.
Mineral oil hydrocarbons (MOH) are present in many fats and oils as well as foods prepared thereof. A survey of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in different types of vegetable fats and oils is reported. Contents of MOSH/MOAH were quantified using liquid chromatography online‐coupled to gas chromatography with flame‐ionization detection (LC‐GC‐FID). Cocoa butter (n = 142) showed levels from <LOQ (2.5 mg kg?1) to 162 mg kg?1 ΣMOSH (sum of C10–C50) and <LOQ to 55 mg kg?1 ΣMOAH, in palm oil (n = 21) ΣMOSH were quantified from <LOQ to 124 mg kg?1 and ΣMOAH from <LOQ to 39 mg kg?1. Sunflower oil showed lower levels: ΣMOSH were determined in the range of <LOQ to 17 mg kg?1 and MOAH were not observed at all. A possible influence of deodorization and a subsequent minimization of MOSH/MOAH was investigated. Systematic model‐experiments were performed on laboratory scale using spiked cocoa butter. Significant minimization of volatile MOH subfractions ≤C24 were observed at a deodorization temperature of 210 °C. Deodorization can be considered as an important processing step to reduce or even remove volatile MOSH/MOAH ≤C24. Practical Applications: Regardless of their possible entry routes into the food chain, volatile fractions of MOSH/MOAH can be removed by deodorizing vegetable fats and oils. This model‐study identifies the temperatures of deodorization that provide a significant improvement toward minimization of undesired MOSH/MOAH.  相似文献   

20.
Characteristics of crude palm oil are high FFA and DAG contents. High DAG content may affect throughput and yield during fractionation: high‐grade specialty fats such as hard palm mid fraction require premium crude palm oil to secure adequate crystallization properties. Moreover, DAGs are generally considered the main precursors for the formation of glycidyl esters during high‐temperature deodorization. The purpose of this study was to investigate the effect of enzymatic remediation on the reduction of FFA and DAG in crude palm oil. In practice, series of process parameters (vacuum and reaction time) were investigated, and the quality of enzymatically remediated crude palm oils was examined in terms of FFA and DAG reduction, TAG composition, and SFC and DSC melting profiles. Fully refined enzymatically remediated palm oils were then dry fractionated. The quality of the oleins derived from the enzymatically remediated palm oil was compared to that of regular RBD palm oleins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号