首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用产朊假丝酵母,在细胞高密度培养基础上,考察了半胱氨酸添加与溶氧控制及低pH胁迫对谷胱甘肽(GSH)合成的影响. 结果表明,细胞高密度培养结束时(45 h),一次性添加50 mmol/L半胱氨酸,第60 h时GSH产量达1534 mg/L. 添加半胱氨酸后的3 h内溶氧控制在5%,之后的12 h将溶氧控制在20%,可减少半胱氨酸添加量,而GSH产量却提高13%. 将30 mmol/L半胱氨酸分2次添加并与pH胁迫和溶氧控制相组合,发酵结束时(78 h),GSH终产量达1936 mg/L.  相似文献   

2.
分别以海藻酸钠和色氨酸为碳源和氮源,采用固相法一步合成出了量子产率为47.9%的氮掺杂荧光碳纳米颗粒(N-CNPs)。根据铜离子存在的条件下,N-CNPs荧光强度的恢复情况与还原型谷胱甘肽浓度成正比的关系,建立基于N-CNPs检测还原型谷胱甘肽的新方法。优化了溶液pH及反应时间等条件。在pH 6.0、铜离子浓度30μmol/L条件下,谷胱甘肽在0.2~45μmol/L浓度范围内与N-CNPs荧光恢复强度呈良好的线性关系,检出限为50 nmol/L。方法具有灵敏度高、选择性好、操作简单等优点,可用于实际样品中谷胱甘肽的检测。  相似文献   

3.
Rhipicephalus (Boophilus) microplus is one of the most widespread ticks causing a massive loss to livestock production. The long-term use of acaracides rapidly develops acaracide resistance. In R. microplus, enhancing the metabolic activity of glutathione S-transferase (RmGST) is one of the mechanisms underlying acaracide resistance. RmGST catalyzes the conjugation of glutathione (GSH) to insecticides causing an easy-to-excrete conjugate. The active RmGST dimer contains two active sites (hydrophobic co-substrate binding site (H-site) and GSH binding site (G-site)) in each monomer. To preserve the insecticide efficacy, s-hexyl glutathione (GTX), a GST inhibitor, has been used as a synergist. To date, no molecular information on the RmGST-GSH/GTX complex is available. The insight is important for developing a novel RmGST inhibitor. Therefore, in this work, molecular dynamics simulations (MD) were performed to explore the binding of GTX and GSH to RmGST. GSH binds tighter and sits rigidly inside the G-site, while flexible GTX occupies both active sites. In GSH, the backbone mainly interacts with W8, R43, W46, K50, N59, L60, Q72, and S73, while its thiol group directs to Y7. In contrast, the aliphatic hexyl of GTX protrudes into the H-site and allows a flexible peptide core to form various interactions. Such high GTX flexibility and the protrusion of its hexyl moiety to the H-site suggest the dual role of GTX in preventing the conjugation reaction and the binding of acaracide. This insight can provide a better understanding of an important insecticide-resistance mechanism, which may in turn facilitate the development of novel approaches to tick control.  相似文献   

4.
Inorganic arsenicals, including arsenite (AsIII) and arsenate (AsV), are well-known human carcinogens. Recently, studies have indicated that arsenic triglutathione (As(GS)3) is unstable in an aqueous solution. The present study was designed to evaluate the degradation mechanism of As(GS)3 in an aqueous solution using high-performance liquid chromatography-electrospray ionisation mass spectrometry (HPLC-ESI-MS). Based on the fragments obtained from MS2 and MS3, we identified two new compounds: one was an isomer of glutathione (GSH), and the other was a product from the cleavage of the glutamyl of oxidised glutathione (GSSG). The isomerization of GSH resulted in the loss of its function such as detoxification of many reactive metabolites. The formation of the two new compounds affected the ratio of GSH/GSSG, and thus may affect the antioxidant and detoxification of GSH/GSSG in mammalian cells.  相似文献   

5.
梅乐和  林东强 《化工学报》1998,49(4):470-475
对用双水相分配技术结合温度诱导相分离技术从酵母中提取谷胱甘肽(GSH)进行了研究.考察了GSH在环氧乙烷──环氧丙烷无规共聚物(EOPO)/羟丙基淀粉(PES)系统中的分配行为,包括两次分离过程(双水相分配及温度诱导过程)中的不同系统组成、pH等对GSH分配的影响,确定了较佳的双水相系统──EOPO400013%,PES10010%,pH=10.5.在此基础上进行了从酵母细胞中提取GSH的工艺研究,设计了合理的分离流程,研究结果表明GSH的总萃取率可达80%以上.  相似文献   

6.
Oxidative conversion of thiols to disulfides is an important chemical transformation in organic synthesis. A tripeptide, glutathione (GSH), composed of glutamate, cysteine and glycine, has been found to be the most abundant low molecular weight thiol in most biological systems. Its importance in mammal systems is believed to be related to its functions in oxidative metabolism and detoxification. It is noted that despite the importance of this substrate, less information is available in the literature on the oxidation of this substrate viewed from its kinetic and mechanistic studies. N-Bromosuccinimide (NBS) is a mild and selective oxidant for many organic compounds, and hence, it has been used as an oxidant for the present redox system. Consequently, the kinetics of oxidation of GSH with NBS in aqueous HClO4 medium has been investigated at 283 K. The reaction rate exhibits first-order dependence on [NBS]o and fractional-order dependence each on [GSH]o and [H+]. The effect of added succinimide, ionic strength and dielectric constant of the medium on the rate of the reaction has been studied. The solvent isotope effect was studied using D2O. The reaction was studied at different temperatures and thermodynamic parameters have been computed. Glutathione disulfide is characterized as the oxidation product of GSH. The protonated species RN+HBr (here R = (CH2O)2?) of the NBS is assumed to be the reactive oxidizing species. The reaction constants involved in the mechanism were evaluated. The observed results have been explained by a plausible mechanism, and the related rate law has been deduced.  相似文献   

7.
8.
培养条件对产朊假丝酵母合成谷胱甘肽的影响   总被引:11,自引:0,他引:11  
考察了培养基组成,培养条件对产朊假丝酵母生长和谷胱甘肽合成的影响,包括不同碳源,氮源及其浓度,pH,装液量,接种量等。确定以葡萄糖、磷酸氢二铵作为碳源和氮源,较佳浓度分别为20g/L和3g/L,接种量为10%,在20 g/L 的糖 浓度时获得的谷胱甘肽总量可达74mg/L,胞内含量为1.4%左右。此外还研究了三种前体氨基酸和ATP的加入量,加入时间对发酵的影响。  相似文献   

9.
Factors involved in reduced glutathione (GSH) and vitamin E-mediated inhibition of NADPH-dependent rat liver microsomal lipid peroxidation were examined. Lipid peroxidation was monitored over a time-course of 180 min by thiobarbituric acid reactive product formation. The addition of 5 mM GSH to the reaction system containing microsomes from rats fed a diet supplemented with 150 IU/kg of α-tocopherol acetate for eight weeks produced a lag in peroxidation of >30 min. This effect was not observed for microsomes prepared from rats fed a diet deficient in vitamin E. Indeed, a prooxidant effect of 5 mM GSH was observed in assays containing microsomes from rats fed a diet deficient in vitamin E. The inhibition by GSH of lipid peroxidation in microsomes prepared from livers of vitamin E supplemented rats was not restricted by its availability, for it was found that approximately 92% of the GSH remained in the reduced form after 60 min. Additional experiments revealed that the α-tocopherol content of peroxidizing microsomes decreased rapidly in the absence of GSH. The addition of 5 mM GSH to the assay system markedly depressed the loss of microsomal α-tocopherol. The results ofin vivo labeling of liver microsomes with [14C] α-tocopherol demonstrated that i) GSH addition to thein vitro peroxidizing medium reduced the disappearance of α-tocopherol, and ii) a compound that interfered with the determination of α-tocopherol was separated by HPLC and was not an oxidation product of α-tocopherol. A portion of the microsomal14C-labeled α-tocopherol was converted to an unidentified product with HPLC retention characteristics that was similar, but not identical, to α-tocopherol quinone.  相似文献   

10.
Extracellular glutathione (GSH) and oxidized glutathione (GSSG) can modulate the function of the extracellular calcium sensing receptor (CaSR). The CaSR has a binding pocket in the extracellular domain of CaSR large enough to bind either GSH or GSSG, as well as the naturally occurring oxidized derivative L-cysteine glutathione disulfide (CySSG) and the compound cysteinyl glutathione (CysGSH). Modeling the binding energies (ΔG) of CySSG and CysGSH to CaSR reveals that both cysteine derivatives may have greater affinities for CaSR than either GSH or GSSG. GSH, CySSG, and GSSG are found in circulation in mammals and, among the three, CySSG is more affected by HIV/AIDs and aging than either GSH or GSSG. The beta-carbon linkage of cysteine in CysGSH may model a new class of calcimimetics, exemplified by etelcalcetide. Circulating glutathionergic compounds, particularly CySSG, may mediate calcium-regulatory responses via receptor-binding to CaSR in a variety of organs, including parathyroids, kidneys, and bones. Receptor-mediated actions of glutathionergics may thus complement their roles in redox regulation and detoxification. The glutathionergic binding site(s) on CaSR are suggested to be a target for development of drugs that can be used in treating kidney and other diseases whose mechanisms involve CaSR dysregulation.  相似文献   

11.
12.
李鑫 《广东化工》2014,(5):158-161,169
建立酶法反应中还原型/氧化型谷胱甘肽含量的液相分析方法。采用ZOABAX SB-C18进行分离,流动相为磷酸二氢钾辛烷磺酸钠溶液∶乙腈(920∶80,V/V),流速1.0 mL/min,检测波长210 nm,进样量20μL;采用外标法定量。还原型/氧化型谷胱甘肽在10~200μg/mL范围内线性关系良好,相关系数分别为0.9994(n=4)、0.9999(n=4),在S/N=3时最低检测限分别为0.037μg/mL、0.019μg/mL;在S/N=10时最低定量限分别为1.90μg/mL、1.12μg/mL;样品加标回收率分别为98.7%~100.6%、98.5%~101.4%;色谱系统稳定性RSD,GSH、GSSH分别为0.44%、1.16%。样品分析显示出本方法操作简便,快速,准确,灵敏度高,稳定性好,适合酶催化反应中还原型/氧化型谷胱甘肽的测定。  相似文献   

13.
Several inorganic/organic N-containing substances were tested as nitrogen source for efficient glutathione production by C. utilis WSH 02-08. Although the strain could assimilate all the inorganic/organic nitrogen, urea and ammonium sulfate were found more favorable to cell growth and glutathione biosynthesis in a flask, respectively, and an optimal C/N ratio existed for each as 5.6 mol/mol and 8.3 mol/mol. A mixed nitrogen source of urea and ammonium under diverse C/N ratios could not boost glutathione fermentation despite the many mixed strategies that were introduced. Batch glutathione production in a stirred fermentor, using the sole or mixed nitrogen sources of urea and ammonium sulfate under their optimal C/N ratios, were conducted; urea was further proved to be the best nitrogen source for glutathione production. The reason was then quantitatively described by kinetic model, together with the distribution of flux for metabolites in metabolic network of glutathione biosynthesis by C. utilis WSH 02-08.  相似文献   

14.
以壳聚糖(CTS)、还原型谷胱甘肽(GSH)为反应物,通过水溶液聚合法制备了新型巯基化壳聚糖高分子絮凝剂壳聚糖?谷胱甘肽(CTS?GSH),采用单因素实验得到了最优的制备条件,并分析了产物的结构与表面微观性能. 结果表明,最优制备条件为质量比CTS:GSH 5:5、反应时间5 h、保护剂N-羟基丁二酰亚胺用量0.40 g、交联剂1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐用量0.25 g、反应体系pH 3.5. 壳聚糖与谷胱甘肽发生了酰胺化反应,所得CTS?GSH表面微观结构较好.  相似文献   

15.
V79 cells and cells over-expressing glutathione transferase (GST) P1-1 have been incubated with the (+)- and (?)-anti?enantiomers of trans?7,8-dihydroxy-9,10-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and trans?9,10-dihydroxy-11,12-epoxy-9,10,11,12-tetrahydrobenzo[c]chrysene (BCDE) and the formation of glutathione (GSH) conjugates and DNA adducts monitored. With (+)-anti?BPDE and (?)-anti?BCDE, the results demonstrate a several fold increase in conjugate formation concomitant with reduced levels of DNA adducts in GST expressing cells relative to control cells. Thus, the effects were restricted to the enantiomers with R?absolute configuration at the benzylic oxirane carbon. The rate of conjugate formation of BCDE relative to BPDE is significantly lower indicating reduced accessibility of the more lipophilic BCDE for GSTP1-1.  相似文献   

16.
Our previous study demonstrated that the glutathione S-transferase Mu 5 (GSTM5) gene is highly CpG-methylated in bladder cancer cells and that demethylation by 5-aza-dC activates GSTM5 gene expression. The aim of the present study was to investigate the role of GSTM5 in bladder cancer. The levels of GSTM5 gene expression and DNA methylation were analyzed in patients with bladder cancer, and functional studies of GSTM5 were conducted using GSTM5 overexpression in cultured bladder cancer cells. Clinical analysis revealed that the GSTM5 mRNA expression was lower in bladder cancer tissues than in normal tissues and that the level of GSTM5 DNA methylation was higher in bladder cancer tissues than in normal urine pellets. Overexpression of GSTM5 decreased cell proliferation, migration and colony formation capacity. Glutathione (GSH) assay results indicated that cellular GSH concentration was decreased by GSTM5 expression and that GSH supplementation reversed the decrease in proliferation and migration of cells overexpressing GSTM5. By contrast, a GSH synthesis inhibitor significantly decreased 5637 cell GSH levels, survival and migration. Furthermore, GSTM5 overexpression inhibited the adhesion of cells to the extracellular matrix protein fibronectin. To elucidate the effect of GSTM5 on anticancer drugs used to treat bladder cancer, cellular viability was compared between cells with or without GSTM5 overexpression. GSTM5-overexpressed cells showed no significant change in the cytotoxicity of cisplatin or mitomycin C in 5637, RT4 and BFTC 905 cells. Though a degree of resistance to doxorubicin was noted in 5637 cells overexpressing GSTM5, no such resistance was observed in RT4 and BFTC 905 cells. In summary, GSTM5 plays a tumor suppressor role in bladder cancer cells without significantly affecting chemoresistance to cisplatin and mitomycin C, and the cellular GSH levels highlight a key mechanism underlying the cancer inhibition effect of GSTM5. These findings suggest that low gene expression and high DNA methylation levels of GSTM5 may act as tumor markers for bladder cancer.  相似文献   

17.
AICA (5′-aminoimidazole-4-carboxamide) ribonucleotides with different phosphorylation levels are the pharmaceutically active metabolites of AICA nucleoside-based drugs. The chemical synthesis of AICA ribonucleotides with defined phosphorylation is challenging and expensive. In this study, we describe two enzymatic cascades to synthesize AICA derivatives with defined phosphorylation levels from the corresponding nucleobase and the co-substrate phosphoribosyl pyrophosphate. The cascades are composed of an adenine phosphoribosyltransferase from Escherichia coli (EcAPT) and different polyphosphate kinases: polyphosphate kinase from Acinetobacter johnsonii (AjPPK), and polyphosphate kinase from Meiothermus ruber (MrPPK). The role of the EcAPT is to bind the nucleobase to the sugar moiety, while the kinases are responsible for further phosphorylation of the nucleotide to produce the desired phosphorylated AICA ribonucleotide. The selected enzymes were characterized, and conditions were established for two enzymatic cascades. The diphosphorylated AICA ribonucleotide derivative ZDP, synthesized from the cascade EcAPT/AjPPK, was produced with a conversion up to 91 %. The EcAPT/MrPPK cascade yielded ZTP with conversion up to 65 % with ZDP as a side product.  相似文献   

18.
PEG-Dextran and PEG-salt aqueous two-phase systems (ATPS) have been applied to separate glutathione (GSH) from crude yeast extracts. Single-factor experiments were carried out to determine the important factors influencing the partition coefficient and extraction yield. The effect of PEG molecular weight, phase-forming components, PEG and Dextran concentration, pH value, and temperature on the GSH partitioning behavior in ATPS was investigated. Three factors, Dextran concentration, pH value, and temperature, were confirmed to have significant influence on the partition coefficient and extraction yield. These factors were further analyzed with the aid of central composite rotatable design and response surface methodology. The optimal conditions for GSH extraction in the PEGDextran system were determined, including PEG molecular weight 6,000, 10% PEG concentration, 14% Dextran concentration, pH 5.2, and temperature 32 °C. A high extraction yield (83.55%) of GSH from crude yeast extracts was achieved under these optimized conditions. This work is very helpful for developing one efficient and cost-effective process for the separation and purification of GSH from yeast broths.  相似文献   

19.
Glutathione S-transferase π (GSTP1-1) is overexpressed in many types of cancer and is involved in drug resistance. Therefore, GSTP1-1 is an important target in cancer therapy, and many GST inhibitors have been reported. We had previously developed an irreversible inhibitor, GS-ESF, as an effective GST inhibitor; however, its cellular permeability was too low for it to be used in inhibiting intracellular GST. We have now developed new irreversible inhibitors by introducing sulfonyl fluoride (SF) into chloronitrobenzene (CNB). The mechanism of action was revealed to be that CNBSF first reacts with glutathione (GSH) through an aromatic substitution in the cell, then the sulfonyl group on the GSH conjugate with CNBSF reacts with Tyr108 of GST to form a sulfonyl ester bond. Our new inhibitor irreversible inhibited GSTP1-1 both in vitro and in cellulo with a long duration of action.  相似文献   

20.
Dysregulated oxidative stress plays a major role in cancer pathogenesis and some types of cancer cells are particularly vulnerable to inhibition of their cellular antioxidant capacity. Glutamate-cysteine ligase (GCL) is the first and rate-limiting step in the synthesis of the major cellular antioxidant glutathione (GSH). Developing a GCL inhibitor may be an attractive therapeutic strategy for certain cancer types that are particularly sensitive to oxidative stress. In this study, we reveal a cysteine-reactive ligand, EN25, that covalently targets an allosteric cysteine C114 on GCLM, the modifier subunit of GCL, and leads to inhibition of GCL activity. This interaction also leads to reduced cellular GSH levels and impaired cell viability in ARID1A-deficient cancer cells, which are particularly vulnerable to glutathione depletion, but not in ARID1A-positive cancer cells. Our studies uncover a novel potential ligandable site within GCLM that can be targeted to inhibit GSH synthesis in vulnerable cancer cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号