首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of silica nanoparticles into polyethylene increased the breakdown strength and voltage endurance significantly compared to the incorporation of micron scale fillers. In addition, dielectric spectroscopy showed a decrease in dielectric permittivity for the nanocomposite over the base polymer, and changes in the space charge distribution and dynamics have been documented. The most significant difference between micron scale and nanoscale fillers is the tremendous increase in interfacial area in nanocomposites. Because the interfacial region (interaction zone) is likely to be pivotal in controlling properties, the bonding between the silica and polyethylene was characterized using Fourier transformed infrared (FTTR) spectroscopy, electron paramagnetic resonance (EPR), and x-ray photoelectron spectroscopy (XPS). The picture which is emerging suggests that the enhanced interfacial zone, in addition to particle-polymer bonding, plays a very important role in determining the dielectric behavior of nanocomposites.  相似文献   

2.
高介电常数的聚合物基纳米复合电介质材料   总被引:8,自引:0,他引:8  
高介电常数的聚合物基电介质材料无论是在电力工程,还是在微电子行业都具有十分重要的作用。研究中主要以聚偏氟乙烯(PVDF)为基体,以纳米和微米尺度的高介电常数的铁电陶瓷钛酸钡(BT)的前驱体粉末为功能添加组分,采用特殊的工艺制备了高介电常数的聚合物基纳米功能电介质复合材料。研究了制备工艺、添加物含量、以及微米/纳米BT的体积比等因素对复合电介质材料介电性能的影响。发现在无水乙醇中,通过纳米BT与PVDF颗粒之间强烈的吸附作用以及热模压工艺,可以制备高度分散性的BT/PVDF纳米复合材料。同时通过合理的组合微米/纳米BT的体积比,在BT同样的体积含量时,微米/纳米BT的共混物对复合材料介电性能的提高有明显协同效应。利用该效应可以制备介电常数高的聚合物基电介质材料。  相似文献   

3.
Pseudomorphic high electron mobility transistors (PHEMTs) are promising devices for use in millimeter-wave and optical communications systems due to their excellent high frequency and low-noise performances. In order to further improve the performance of these devices, their gate lengths must be reduced to the technological limit and a small gate resistance must be realized. However, shorter gates result in an increase of short channel effects that limit microwave performance. In order to reduce the gate resistance, T-shaped gates with large cross-sectional areas are required. However, the thickness and dielectric constant of the passivation layer have major impacts on the gate capacitance. In this study, an ordered mesoporous silica film was introduced as a passivation layer between T-gates. Si3N4 with a dielectric constant of 7.4 and ordered mesoporous silica with a dielectric constant of 2.48 were used as passivation layers. The Si3N4 dielectric layer and the ordered mesoporous silica film were stacked together and the device characteristics were investigated.  相似文献   

4.
The dielectric properties of epoxy nanocomposites with insulating nano-fillers, viz., TiO2, ZnO and AI2O3 were investigated at low filler concentrations by weight. Epoxy nanocomposite samples with a good dispersion of nanoparticles in the epoxy matrix were prepared and experiments were performed to measure the dielectric permittivity and tan delta (400 Hz-1 MHz), dc volume resistivity and ac dielectric strength. At very low nanoparticle loadings, results demonstrate some interesting dielectric behaviors for nanocomposites and some of the electrical properties are found to be unique and advantageous for use in several existing and potential electrical systems. The nanocomposite dielectric properties are analyzed in detail with respect to different experimental parameters like frequency (for permittivity/tan delta), filler size, filler concentration and filler permittivity. In addition, epoxy microcomposites for the same systems were synthesized and their dielectric properties were compared to the results already obtained for nanocomposites. The interesting dielectric characteristics for epoxy based nanodielectric systems are attributed to the large volume fraction of interfaces in the bulk of the material and the ensuing interactions between the charged nanoparticle surface and the epoxy chains.  相似文献   

5.
The use of nanocomposite polymers as electrical insulating materials has been growing rapidly in recent decades. The base polyethylene properties have been developed by adding small amounts of different fillers to the polyethylene material. It is economically to get polymer development by using cost-fewer nanoparticles; therefore, polyethylene dielectric properties are trapped by presence cost-fewer nanofillers like clay and fumed silica which are importance in development manufacture of power cables products. Dielectric strength is a vital pointer for quality of insulation materials of electrical power applications; hence, experimental measurements have been investigated on ac high voltage breakdown of new cost-fewer polyethylene nanocomposites materials. All experimental results of the new polyethylene nanocomposites have been compared with conventional polyethylene insulation materials; therefore, it has been specified the influence types and their concentrations of cost-fewer nanofillers on dielectric strength of polyethylene nanocomposite insulation materials.  相似文献   

6.
Abstract

This study explored the preparation and electrical properties of 0–3 barium titanate/polydimethylsiloxane nanocomposites by dispersing barium titanate nanoparticles (BaTiO3; BT) into the polydimethylsiloxane (PDMS) matrix phase. The effect of barium titanate nanoparticles on electrical properties has been investigated systematically, and the relative permittivity of nanocomposites was found to increase significantly with increasing barium titanate content. Different theoretical models were used to predict the dielectric constant of these composites and compare their experimental value with the theoretical value in order to find an appropriate equation. The result indicated that the dielectric properties of composites are influenced not only by relative permittivity of the components but also dependence on interactions between ceramics and polymers. Furthermore, the preparation and dielectric properties of BT/PDMS nanocomposites modified with carbon nanotube (CNT) were also studied. The dielectric results demonstrate that adding CNT can enhance the relative permittivity of the BT/PDMS composite via improvement of dispersion and distribution of the BT nanoparticles in the PDMS matrix phase. Moreover, the electrical outputs from the BT/PDMS/CNT nanocomposites generator were measured under periodic knocking. The nanocomposites innovatively expand the feasibility of self-powered energy systems for smart sensor and energy harvesting applications.  相似文献   

7.
聚合物复合电介质材料在电工领域有着广泛的应用。在电力设备运行过程中,电介质材料在温度、电(磁)场、机械力以及环境的作用下会发生击穿现象,造成电力设备失效以及由此引起的损失。因此,提升复合电介质的击穿强度一直是电工领域的重要问题。纳米复合电介质代表未来电力设备绝缘的发展方向。该文首先简述聚合物电介质的基本击穿理论,并总结提升纳米复合电介质击穿强度的基本策略及原理。接着,聚焦纳米粒子对电荷产生、输运以及电场分布的作用,总结几种提高纳米复合电介质击穿强度的方法,包括纳米粒子的表面工程、调控纳米粒子的维度和排列、制备多层结构的复合电介质、制备核壳结构纳米粒子复合介质,以及利用金属纳米颗粒的纳米效应。最后,对提升纳米复合电介质击穿强度未来的研究方向进行展望。  相似文献   

8.
Cerium oxide nanoparticles were synthesized using cerium nitrate hexa hydrate and ammonium carbonate as precursors. Structural characterizations were done using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The crystallite size and lattice strain on the peak broadening of CeO2 nanoparticles were studied using Williamson-Hall (W-H) analysis. The dielectric properties of nanocrystalline CeO2 samples with different calcination temperatures, and frequencies have been studied over a temperature range from 303 to 423 K. It is found that the dielectric constant and dielectric loss for all temperatures have high values at low frequencies, which decreases rapidly as frequency is increased and attains a constant value at higher frequencies. The room temperature dielectric constant ε′ obtained for the as prepared CeO2 nanoparticle sample is 61, which constitutes the highest value ever reported at low frequency. A.C. conductivity, which was derived from dielectric constant and loss tangent data, has a low value at smaller frequencies that increases as the frequency is increased. The dielectric constant and a.c. conductivity values are shifted upwards as the temperature is raised. However, these values are decreased as the annealing temperature is increased. The desired structural properties and high dielectric constant of nanophase CeO2 make it as a promising material for the high dielectric constant dielectric gate in complementary metal oxide semiconducting (CMOS) devices.  相似文献   

9.
Synthesis of highly crystallized mullite has been achieved at a temperature of 1000°C by sol–gel technique in presence of iron ions of different concentrations. XRD, FTIR spectroscopy, FESEM, LCR meter and HyMDC, Hysteresis measurement instrument, characterized samples. Mullite formation was found to depend on the concentration of the ions. The dielectric properties (dielectric constant, tangent loss and a.c. conductivity) of the composites have been measured, their variation with increasing frequency and concentration of the doped metal was investigated, and magnetic behavior was observed from the hysteresis loops. All the experimentations were performed at the room temperature. The composite showed a minimum dielectric constant of 3.26 at 0.002(M) concentration of iron at 1.5?MHz and the magnetic properties of nanocomposites suggest that the iron nanoparticles show hysteresis loop in 0.10?M, 0.15?M and 0.20?M , hence acts like typical paramagnetic materials as is the case for other iron-doped ferrisilicates.  相似文献   

10.
采用原位还原法制备了石墨烯基Fe-Ni合金(Fe-Ni/RGO)纳米复合物,利用拉曼、XRD、TEM和矢量网络分析仪对复合物的微观结构、形貌、磁性能和吸波特性进行了表征。结果表明,Fe-Ni/RGO纳米复合物对电磁波的吸收主要依靠高频段内的磁损耗来实现,磁损耗越大,复合物的吸波性能越好,而引入较高的介电损耗则会导致复合物的吸波性能变差。当原料中[Fe2+]/[Ni2+]摩尔比为1∶1且[Fe2+]+[Ni2+]=0.49mmol时,得到的纳米复合物吸波性能最好。  相似文献   

11.
Ni2-xCox(WO4)2 and Ni2-xMnx(WO4)2 (x?=?0.0, 0.50, 1.0, 1.50 and 2.0) nanocomposites have been synthesized by facile hydrothermal method. The synthesized samples have been characterized by powder XRD and Scanning Electron Microscopy to analyze the structure and morphology. Structural analysis has revealed the single phase formation with wolframite monoclinic system for NiWO4 samples. The calculated crystallite size ranges from 6 to 40 nm for the nanocomposites. Magnetic and dielectric parameters have also been studied. Magnetic susceptibility measurements of each sample have been carried out at room temperature (312 K) by using Sherwood magnetometer. A decrease in susceptibility values has been observed by increase in the concentration of manganese or cobalt in nickel tungstate leading to antiferromagnetic behavior. Dielectric measurements in the frequency range of 6 kHz to 1 MHz have been calculated. The analysis showed that dielectric parameters decrease with increase in frequency.  相似文献   

12.
The use of ferroelectric polymer films as pyroelectric sensors and ultrasonic transducers has attracted considerable interest. Polymer-based 0-3 nanocomposites, consisting of nanocrystalline calcium and lanthanum modified lead titanate (PCLT) powder embedded in a vinylidene fluoride-trifluoroethylene (polyvinylidenefluoride (PVDF)-trifluoroethylene (TRFE)) copolymer matrix, also have shown good potential in pyroelectric and piezoelectric applications. The dielectric permittivity and loss in these composites are important parameters characterizing their performance. In this study, the relative permittivity and loss of PCLT/PVDF-TRFE nanocomposites with various volume fractions of ceramic have been measured as function of frequency and temperature. The copolymer and nanocomposites exhibit a dielectric relaxation at the ferroelectric-to-paraelectric phase transition and another relaxation near room temperature (at ~1 MHz). The influence of the room temperature relaxation on transducer performance is discussed  相似文献   

13.
A multilayer pyroelectric thin film structure (MPTFS) is one of promising candidates for applications on uncooled IR focal plane array detectors. In the MLPTFS, a porous silica film is used as a thermal insulation layer, and the thermal insulation is improved with increasing thickness of a porous silica film. On the other hand, the effects of thickness of the porous silica films on the electrical properties of pyroelectric thin films need to be addressed. The research results have shown: the thickness of the porous silica films can not be increase unboundedly. With increasing thickness of porous silica films, the coercive field increase, the dielectric constant and the breakdown field decrease respectively. When the thickness of the porous silica films is lower than 3 μm, the effects of the porous silica films on the properties of PT thin films are acceptable. The optimized thickness of the porous silica films is determined according to the results of the electrical properties.  相似文献   

14.
低介电常数电路板用烯丙基化聚苯醚树脂   总被引:8,自引:2,他引:6  
祝大同 《绝缘材料》2001,34(1):28-33
本文对国外低介电常数印刷电路板用热固性烯丙基化聚苯醚树旨的制备工艺与性能进行了探讨。  相似文献   

15.
To achieve a compact and reliable design of electrical equipment for the present day requirements, there is an urgent need for better and smart insulating materials and in this respect, the reported enhancements in dielectric properties obtained for polymer nanocomposites seems to be very encouraging. To further understand the dielectric behavior of polymer nanocomposites, this experimental work reports the trends of dielectric permittivities and tan delta (loss tangent) of epoxy nanocomposites with single nano-fillers of Al2O3 and TiO2at low filler concentrations (0.1%, 0.5%, 1% & 5%) over a frequency range of 1 MHz-1 GHz. Results show that the nanocomposites demonstrate some very different dielectric characteristics when compared to those for polymer microcomposites. Unlike the usual expectations of increasing permittivity with increasing filler concentration in polymer microcomposites, it has been seen that up to a certain nano-filler concentration and depending on the permittivity of the nano-filler, the permittivities of the epoxy nanocomposites are less than that of the unfilled epoxy at all the measured frequencies. This suggests that there is a very strong dependence of the filler concentration and nano-filler permittivity on the final permittivity of the nanocomposites at all these frequencies. But, in the case of tan delta behavior in nanocomposites, significant effects of filler concentrations were not observed with both Al2O3 and TiO2 fillers. Tan delta values in nanocomposites with Al2O3 fillers are found to be marginally lower at all filler concentrations when compared with the value for unfilled epoxy. But, in TiO2Oepoxy nanocomposites, although the variations in tan delta are not significant with respect to unfilled epoxy, some interesting trends are observed with respect to the frequencies of measurement.  相似文献   

16.
In this work, polycrystalline Ba5SmTi3Nb7O30 tungsten–bronze structured ferroelectric ceramics were synthesized by solid-state reaction technique at different sintering temperatures and durations. The X-ray diffractograms reveal the formation of the compounds in orthorhombic crystal system. The density of the compound is observed to increase with increase in sintering temperature and duration. Scanning electron microscopy (SEM) has been used for the microstructural investigation. Detailed dielectric properties of the compounds have been studied as a function of frequency and temperature. The variations of dielectric constant $\left( {\varepsilon \prime _r } \right)$ with temperature show that the compounds undergo a diffuse type ferro-paraelectric phase transition. The dielectric constant is found to increase with the increasing sintering temperature and duration. In all the samples, the variation of dielectric loss (tan δ) with temperature is observed to be almost constant initially but it increases as temperature is increased and a peak is observed only when the material is sintered at higher temperature for longer duration. The frequency dependence of dielectric constant and loss shows a decreasing trend up to nearly 10 kHz and beyond this frequency there is almost no variation. Also, the diffusivities of the samples have been calculated and it is found to increase with increasing sintering temperature and duration.  相似文献   

17.
PLZT fine powders have been synthesized by a hydrothermal process using lead acetate, lanthanum acetate, zirconium n-propoxide and titanium isopropoxide as starting materials. The synthesis was performed at 200°C for 8, 12 and 24 h. 4 M KOH was used as a mineralizer to adjust the pH to an optimum value for the mixed precursor solution. After hydrothermal treatment the solid portion was separated out, washed and dried at 100°C for 12 h, where PLZT fine powders were obtained. PLZT powders were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The PLZT powders were pressed and sintered to obtain high density ceramics, which then were investigated by XRD and SEM. The dielectric properties of the ceramics were investigated by measurements of dielectric constant and dielectric loss as a function of temperature at a fixed frequency.  相似文献   

18.
Ceramic powders of Pb[(Mg1/3Ta2/3),Ti]O3, with the octahedral components substituted separately as well as simultaneously by Zn and Nb, were synthesized by a two-step B-site precursor method. Prepared powders were examined by X-ray diffraction (XRD) to monitor the phase developments and also to determine the crystallographic aspects. The weak-field low-frequency dielectric constant and loss values of the sintered specimens were determined. Temperature-dependent dielectric constant values were further analyzed in terms of diffuseness/sharpness in the phase transition modes. The internal microstructures of the ceramics were examined by scanning electron microscopy (SEM).  相似文献   

19.
以正硅酸乙酯和硝酸镍为原料,利用溶胶-凝胶法制备了纳米NiO-SiO2复合体,再通过氢气还原得到Ni-SiO2纳米复合材料。利用X射线衍射(XRD)确定了样品的相组成,利用透射电子显微镜(TEM)观察了样品的微观结构,利用振动样品磁强计测定了样品的磁性能。研究了成分和焙烧温度对纳米复合颗粒微观结构和性能的影响。研究发现,所形成的纳米颗粒是以Ni为核心,外面包裹着非晶态SiO2层的核壳结构。随着硅含量的增加,包裹层变厚,随着焙烧温度升高颗粒直径增大。讨论了制备条件和SiO2含量对材料的微观形貌和磁学性能的影响。  相似文献   

20.
The results of erosion resistance, tensile strength, elongation at break, hardness, and thermal stability measurements are presented for silicone nanocomposites prepared using various nano and micro silica and alumina fillers in a two-part silicone rubber (SiR) matrix. The fillers are used to improve the erosion resistance of SiR, which is necessary for outdoor insulation housing applications. Good dispersion of the fillers is achieved using Triton/sup TM/, a common surfactant. An optimal surfactant concentration imparts good erosion resistance to the nanocomposites in laser heating tests without adverse effects, but excess surfactant has a negative impact on the mechanical properties of the silicone. Thermal gravimetric analysis demonstrated that nano fumed silica imparts better heat resistance to silicone than natural nano silica or nano alumina fillers. Fourier transform infrared spectroscopy analysis of the nanofillers indicated a significantly higher concentration of silanol groups in the nano fumed silica filler than in micro silica. The influence of the increased number of silanol groups on the erosion resistance of the nanocomposites and their mechanical properties is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号