首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Saccharomyces cerevisiae, the RAD51 and RAD52 genes are involved in recombination and in repair of damaged DNA. The RAD51 gene is a structural and functional homologue of the recA gene and the gene product participates in strand exchange and single-stranded-DNA-dependent ATP hydrolysis by means of nucleoprotein filament formation. The RAD52 gene is important in RAD51-mediated recombination. Binding of this protein to Rad51 suggests that they cooperate in recombination. Homologues of both Rad51 and Rad52 are conserved from yeast to humans, suggesting that the mechanisms used for pairing homologous DNA molecules during recombination may be universal in eukaryotes. Here we show that Rad52 protein stimulates Rad51 reactions and that binding to Rad51 is necessary for this stimulatory effect. We conclude that this binding is crucial in recombination and that it facilitates the formation of Rad51 nucleoprotein filaments.  相似文献   

2.
Saccharomyces cerevisiae Rad51 protein is the paradigm for eukaryotic ATP-dependent DNA strand exchange proteins. To explain some of the unique characteristics of DNA strand exchange promoted by Rad51 protein, when compared with its prokaryotic homologue the Escherichia coli RecA protein, we analyzed the DNA binding properties of the Rad51 protein. Rad51 protein binds both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in an ATP- and Mg2+-dependent manner, over a wide range of pH, with an apparent binding stoichiometry of approximately 1 protein monomer per 4 (+/-1) nucleotides or base pairs, respectively. Only dATP and adenosine 5'-gamma-(thiotriphosphate) (ATPgammaS) can substitute for ATP, but binding in the presence of ATPgammaS requires more than a 5-fold stoichiometric excess of protein. Without nucleotide cofactor, Rad51 protein binds both ssDNA and dsDNA but only at pH values lower than 6.8; in this case, the apparent binding stoichiometry covers the range of 1 protein monomer per 6-9 nucleotides or base pairs. Therefore, Rad51 protein displays two distinct modes of DNA binding. These binding modes are not inter-convertible; however, their initial selection is governed by ATP binding. On the basis of these DNA binding properties, we conclude that the main reason for the low efficiency of the DNA strand exchange promoted by Rad51 protein in vitro is its enhanced dsDNA-binding ability, which inhibits both the presynaptic and synaptic phases of the DNA strand exchange reaction as follows: during presynapsis, Rad51 protein interacts with and stabilizes secondary structures in ssDNA thereby inhibiting formation of a contiguous nucleoprotein filament; during synapsis, Rad51 protein inactivates the homologous dsDNA partner by directly binding to it.  相似文献   

3.
4.
Beyond the known mutagenic properties of DNA lesions, recent evidence indicates that several forms of genomic damage dramatically influence the catalytic activities of DNA topoisomerases. Apurinic sites, apyrimidinic sites, base mismatches, and ultraviolet photoproducts all enhance topoisomerase I-mediated DNA cleavage when they are located in close proximity to the point of scission. Furthermore, when located between the points of scission of a topoisomerase II cleavage site, these same lesions (with the exception of ultraviolet photoproducts) greatly stimulate the cleavage activity of the type II enzyme. Thus, as found for anticancer drugs, lesions have the capacity to convert topoisomerases from essential cellular enzymes to potent DNA toxins. These findings raise exciting new questions regarding the mechanism of anticancer drugs, the physiological functions of topoisomerases, and the processing of DNA damage in the cell.  相似文献   

5.
The Rad51 protein of Saccharomyces cerevisiae is a eukaryotic homolog of the RecA protein, the prototypic DNA strand-exchange protein of Escherichia coli. RAD51 gene function is required for efficient genetic recombination and for DNA double-strand break repair. Recently, we demonstrated that RecA protein has a preferential affinity for GT-rich DNA sequences-several of which exhibit enhanced RecA protein-promoted homologous pairing activity. The fundamental similarity between the RecA and Rad51 proteins suggests that Rad51 might display an analogous bias. Using in vitro selection, here we show that the yeast Rad51 protein shares the same preference for GT-rich sequences as its prokaryotic counterpart. This bias is also manifest as an increased ability of Rad51 protein to promote the invasion of supercoiled DNA by homologous GT-rich single-stranded DNA, an activity not previously described for the eukaryotic pairing protein. We propose that the preferred utilization of GT-rich sequences is a conserved feature among all homologs of RecA protein, and that GT-rich regions are loci for increased genetic exchange in both prokaryotes and eukaryotes.  相似文献   

6.
The hus1+ gene is one of six fission yeast genes, termed the checkpoint rad genes, which are essential for both the S-M and DNA damage checkpoints. Classical genetics suggests that these genes are required for activation of the PI-3 kinase-related (PIK-R) protein, Rad3p. Using a dominant negative allele of hus1+, we have demonstrated a genetic interaction between hus1+ and another checkpoint rad gene, rad1+. Hus1p and Rad1p form a stable complex in wild-type fission yeast, and the formation of this complex is dependent on a third checkpoint rad gene, rad9+, suggesting that these three proteins may exist in a discrete complex in the absence of checkpoint activation. Hus1p is phosphorylated in response to DNA damage, and this requires rad3+ and each of the other checkpoint rad genes. Although there is no gene related to hus1+ in the Saccharomyces cerevisiae genome, we have identified closely related mouse and human genes, suggesting that aspects of the checkpoint control mechanism are conserved between fission yeast and higher eukaryotes.  相似文献   

7.
The c-Abl protein tyrosine kinase is activated by ionizing radiation (IR) and certain other DNA-damaging agents. The present studies demonstrate that c-Abl associates constitutively with protein kinase C delta (PKCdelta). The results show that the SH3 domain of c-Abl interacts directly with PKCdelta. c-Abl phosphorylates and activates PKCdelta in vitro. We also show that IR treatment of cells is associated with c-Abl-dependent phosphorylation of PKCdelta and translocation of PKCdelta to the nucleus. These findings support a functional interaction between c-Abl and PKCdelta in the cellular response to genotoxic stress.  相似文献   

8.
The human Rad51 protein is homologous to the RecA protein and catalyses homologous pairing and strand transfer reactions in vitro. Using single-stranded circular and homologous linear duplex DNA, we show that hRad51 forms stable joint molecules by transfer of the 5' end of the complementary strand of the linear duplex to the ssDNA. The polarity of strand transfer is therefore 3' to 5', defined relative to the ssDNA on which hRad51 initiates filament formation. This polarity is opposite to that observed with RecA. Homologous pairing and strand transfer require stoichiometric amounts of hRad51, corresponding to one hRad51 monomer per three nucleotides of ssDNA. Joint molecules are not observed when the protein is present in limiting or excessive amounts. The human ssDNA binding-protein, hRP-A, stimulates hRad51-mediated reactions. Its effect is consistent with a role in the removal of secondary structures from ssDNA, thereby facilitating the formation of continuous Rad51 filaments.  相似文献   

9.
10.
11.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base excision repair (BER) of uracil-containing DNA was deficient in rad27 mutant extracts in that (i) the Apn1 activity was reduced, and (ii) after DNA incision by Apn1, hydrolysis of 1-5 nucleotides 3' to the baseless sugar phosphate was deficient. Thus, some AP sites may lead to unprocessed DNA strand breaks in rad27 mutant cells. The severe MMS sensitivity of rad27 mutants is not caused by a reduction of the Apn1 activity. Surprisingly, we found that Apn1 endonuclease sensitizes rad27 mutant cells to MMS. Deleting the APN1 gene largely restored the resistance of rad27 mutants to MMS. These results suggest that unprocessed DNA strand breaks at AP sites are mainly responsible for the MMS sensitivity of rad27 mutants. In contrast, nucleotide excision repair and BER of oxidative damage were not affected in rad27 mutant extracts, indicating that Rad27 is specifically required for BER of AP sites in DNA.  相似文献   

12.
The Saccharomyces cerevisiae Rad51 protein is important for genetic recombination and repair of DNA double-strand breaks in vivo and can promote strand exchange between linear double-stranded DNA and circular single-stranded DNA in vitro. However, unlike Escherichia coli RecA, Rad51 requires an overhanging complementary 3' or 5' end to initiate strand exchange; given that fact, we previously surmised that the fully exchanged molecules resulted from branch migration in either direction depending on which type of end initiated the joint molecule. Our present experiments confirm that branch migration proceeds in either direction, the polarity depending on whether a 3' or 5' end initiates the joint molecules. Furthermore, heteroduplex DNA is formed rapidly, first at the overhanging end of the linear double-stranded DNA's complementary strand and then more slowly by progressive lengthening of the heteroduplex region until strand exchange is complete. Although joint molecule formation occurs equally efficiently when initiated with a 3' or 5' overhanging end, branch migration proceeds more rapidly when it is initiated by an overhanging 3' end, i.e., in the 5' to 3' direction with respect to the single-stranded DNA.  相似文献   

13.
The RAD51 and RAD52 genes of Saccharomyces cerevisiae are key members of the RAD52 epistasis group required for genetic recombination and the repair of DNA double-stranded breaks. The RAD51 encoded product mediates the DNA strand exchange reaction. Efficient strand exchange is contingent upon the addition of the heterotrimeric single-stranded DNA binding factor replication protein A (RPA) after Rad51 has nucleated onto the single-stranded DNA. However, if the single-stranded DNA is incubated with Rad51 and RPA simultaneously to mimic what may be expected to occur in vivo, the efficiency of strand exchange decreases dramatically, revealing an inhibitory effect of RPA that is distinct from its stimulatory function. Interestingly, the inclusion of Rad52 protein, which has been purified in this study from yeast cells, restores the efficiency of strand exchange. Thus, Rad52 functions as a co-factor for the Rad51 recombinase, acting specifically to overcome the apparent competition by RPA for binding to single-stranded DNA.  相似文献   

14.
15.
The eukaryotic homologs of RecA protein are central enzymes of recombination and repair, and notwithstanding a high degree of conservation they differ sufficiently from RecA to offer insights into mechanisms and biological roles. The yield of DNA strand exchange reactions driven by both Escherichia coli RecA protein and its human homolog HsRad51 protein was inversely related to the GC content of oligonucleotide substrates, but at any given GC composition, HsRad51 promoted less exchange than RecA. When 40% of bases were GC pairs, the rate constant for strand exchange by HsRad51 was unmeasurable, whereas the rate constants for homologous pairing were unaltered relative to more AT-rich DNA. The ability of HsRad51 to form joints in the absence of net strand exchange was confirmed by experiments in which heterologous blocks at both ends of linear duplex oligonucleotides produced joints that instantly dissociated upon deproteinization. These findings suggest that HsRad51 acting alone on human DNA in vivo is a pairing protein that cannot form extensive heteroduplex DNA.  相似文献   

16.
The intensity dependence of the rose bengal (RB)-photosensitized inhibition of red blood cell acetylcholinesterase has been studied experimentally and the results compared to a quantitative excitation/deactivation model of RB photochemistry. Red blood cell membrane suspensions containing 5 microM RB were irradiated with 532 nm, 8 ns laser pulses with energies between 1 and 98.5 mJ. A constant dose (7 J) was delivered to all samples by varying the total number of pulses. At incident energies greater than approximately 4.5 mJ/pulse, the efficiency for photosensitized enzyme inhibition decreased as the energy/pulse increased. The generation of RB triplet state was monitored as a function of laser energy and the triplet-triplet absorption coefficient was determined to be 1.9 x 10(4) M-1 cm-1 at 530 nm. The number of singlet oxygen molecules produced at each intensity was calculated from both the physico-mathematical model and from laser flash photolysis results. The results indicated that the photosensitized inhibition of acetylcholinesterase was exclusively mediated by singlet oxygen, even at the highest laser intensities employed.  相似文献   

17.
18.
Cyclin G1 has been linked to both positive and negative growth regulation. The expression of cyclin G1 is induced by transforming growth factor beta1 and p53, as well as by multiple mitogenic stimuli in mammalian cells in culture. However, the physiological role of cyclin G1 remains unclear. To examine the cell-cycle regulation of cyclin G1 in vivo, two models of coordinated cell proliferation induced by partial hepatectomy (PH) in the presence or absence of DNA damage were used. To introduce DNA damage, mice were treated with the alkylating drug, 1,4-bis[N,N'-di(ethylene)-phosphamide]piperazine (Dipin) 2 hours before PH. Cell-cycle progression was monitored by 5-bromo-2-deoxyuridine (BrdU) incorporation into the DNA, the frequency of mitoses, the expression of cell-cycle control genes, and by flow cytometry. Dipin treatment resulted in cell-cycle arrest at the G2/M boundary without affecting G0/G1 and G1/S transitions. While the hepatocytes progressively entered G2 phase arrest, the cyclin G1 mRNA and protein levels increased more than five- and eightfold, respectively. Cyclin G1 had a nuclear localization in all interphase cells with clear absence from nucleoli. In contrast, during mitosis, cyclin G1 was undetectable by immunohistochemistry. Taken together, our data provide evidence for a putative role of cyclin G1 in G2/M checkpoint control.  相似文献   

19.
HsRec2/Rad51B is a 350-amino acid protein with a molecular mass of 38,300 Da that appears to be involved in cell cycle regulation and UV-induced apoptosis. The mouse and human genes were isolated based on their homology to a recombinational repair gene from Ustilago maydis and contain functional domains to hRAD51 and hLIM 15 (M. C. Rice et al., Proc. Natl. Acad. Sci. USA, 94: 7417-7422, 1997). Here, we report the results of studies on the behavior of CHO cells containing a plasmid encoding a wild-type hsRec2/Rad51B, a full-length protein with a single mutation at residue 163, which lies in the putative src site, and a truncated version of hsRec2/Rad51B, containing only the first 100 amino acids at the NH2 terminus. Using fluorescence-activated cell sorting analysis to follow the progression of cells through the cell cycle, we find that stable transfectants constitutively overexpressing the wild-type human Rec2/Rad51B protein exhibit a G1 delay. In addition, when irradiated with UV at a dose of 15 J/m2, CHO cells transfected with the various hREC2/RAD51B vectors exhibited different responses. Cells expressing the wild-type human Rec2/Rad51B underwent apoptosis, with the greatest cell death occurring 24 h after irradiation. The control cells, which contained an empty vector, and the cells expressing truncated hsRec2/Rad51B or the full-length Rec2 with a mutation at residue 163 did not. In summary, these findings of cell cycle slowing and UV-induced apoptosis in CHO cells constitutively expressing the human Rec2/Rad51B protein suggest that hsRec2/Rad51B plays a role in a DNA damage surveillance pathway.  相似文献   

20.
To a number of nurse educators, the Internet is a new, innovative and exciting teaching and learning tool. Sadly, anecdotal evidence suggests that many educators remain largely unaware of these new technologies or their potential to assist in the process of learning. Such a situation is not surprising given the limited amount of literature detailing the use of the Internet in nurse education and a profound lack of educational research in the area. This paper will highlight some of the benefits of the Internet for nursing students and educators, provide an overview of a number of Internet technologies and suggest some practical applications of these technologies in nurse education. A glossary of Internet terms is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号