首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
直流碳弧法制备碳包覆铁纳米颗粒机理研究   总被引:1,自引:1,他引:0  
采用直流碳弧等离子体法成功制备了碳包覆铁纳米颗粒,利用透射电子显微镜和高分辨透射电子显微镜、X射线衍射、X射线能谱仪对样品的形貌、物相结构、化学成分和粒度进行表征分析,并对碳包覆纳米金属颗粒的形成机理进行初步探讨。结果表明:直流碳弧等离子体技术制备的碳包覆纳米金属颗粒具有明显的铁核(bcc-Fe)/碳壳(石墨层片)包覆结构,颗粒大多呈球形和椭球形,粒径分布在20~60nm范围,平均粒径为44nm,铁粒子外碳层的厚度为5~8nm。碳包覆铁纳米铁颗粒是通过颗粒内部固态形式的碳自行扩散至颗粒表面和颗粒外部气态形式的碳沉积到颗粒表面形成的。  相似文献   

2.
白蛋白包覆纳米Fe3O4磁性粒子的制备与表征   总被引:3,自引:0,他引:3  
目的:制备用于肿瘤靶向治疗的纳米级Fe3O4磁性粒子。方法:采用液相共沉淀法制备纳米Fe3O4颗粒,通过高温固化法使得白蛋白固化包覆磁性Fe3O4磁性粒子。结果:X-Ray衍射分析表明制得的纳米Fe3O4为反尖晶石结构,晶粒平均粒径为17.9nm;白蛋白包覆的磁性纳米粒子的平均粒径为341nm。结论:纳米Fe3O4及其白蛋白包覆的磁性粒孚可用作药物的载体,适用于肿瘤靶向治疗的进一步研究。  相似文献   

3.
以淀粉为炭基质,硝酸镍为金属纳米颗粒前躯体,在氢气保护下进行控温炭化制备出准球形的碳包覆Ni纳米颗粒,采用HRTEM、EDX和XRD对产物进行表征,纳米颗粒呈核壳结构,粒径分布比较窄,金属颗粒为单晶Ni。通过波导法对所制备的碳包覆Ni纳米材料电磁性能进行分析,采用矢量网络仪测试分析其在18~26.2GHz频率范围内电磁参数,并阐述材料结构与电磁性能之关联。  相似文献   

4.
大量制备磁热性能优异的磁性纳米粒子对磁热疗和组织复温的生物学应用具有理论价值.本研究通过高温电弧法制备FeNi磁性纳米颗粒,通过超声-沉降分级筛分得到平均粒径为80 nm的FeNi纳米颗粒,通过溶胶-凝胶法得到平均粒径为100 nm,SiO2壳层厚度为15~20 nm的FeNi@SiO2纳米复合粒子.超导量子干涉仪测定...  相似文献   

5.
直流碳弧等离子体法制备碳包覆铁纳米颗粒研究   总被引:3,自引:0,他引:3  
在惰性保护气氛下,采用直流碳弧等离子体法成功制备了碳包覆铁纳米颗粒,并利用x射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线能谱仪(EDS)、透射电子显微镜(TEM)和相应选区电子衍射(ED)等测试手段,对样品的化学成分、形貌、物相结构、粒度等特征进行表征分析.实验结果表明:直流碳弧等离子体技术制备的碳包覆纳米金属颗粒具有明显的核-壳结构,内核金属结晶度较高,外壳碳为类石墨层结构,颗粒大多呈球形和椭球形,粒径分布在20nm~60nm范围,平均粒径为44nm.  相似文献   

6.
首先通过化学共沉淀法制备出Fe3O4磁性纳米颗粒,考察了表面活性剂的用量、碱的用量、陈化时间以及三价铁与二价铁的摩尔比等因素对Fe3O4纳米颗粒性能的影响。制备出饱和磁化强度为73.85A.m2/kg、粒径大小为10nm以下的Fe3O4纳米颗粒。在此基础上,制备出Fe3O4/Au复合纳米颗粒,通过VSM、TEM、XRD、XPS对产物进行了表征,研究了HAuCl4的用量、还原剂的种类、硅烷偶联剂以及包金之前的Fe3O4纳米颗粒对复合颗粒的影响,结果表明所制得的Fe3O4/Au复合磁性纳米颗粒包覆良好,粒径大小为50~200nm,饱和磁化强度为10.08A.m2/kg。  相似文献   

7.
采用共沉淀法制备了柠檬酸修饰的磁性Fe3O4纳米颗粒。通过改变反应过程中柠檬酸的量,研究柠檬酸加入量对纳米颗粒粒径的影响。通过透射电子显微镜、红外、热重、震动样品磁强计等表征手段对制备的磁性纳米颗粒进行表征。结果显示,随着柠檬酸加入量的增加,纳米颗粒的粒径减小,单位质量的颗粒表面包覆的柠檬酸量增大,比饱和磁化强度降低。最后研究了它们的磁共振弛豫性能,发现随着纳米颗粒粒径的逐渐减小,纵向弛豫率和横向弛豫率都显著减小,表明柠檬酸小分子可以成为磁性纳米颗粒造影剂合成有效的调控分子。  相似文献   

8.
采用化学共沉淀法制备了Fe3O4纳米颗粒,以PEG-4000为表面活性剂进行表面修饰,制备了分散性良好的纳米Fe3O4磁流体.磁流体存在时,采用分散聚合法,以苯乙烯为单体制备了磁性高分子微球.TEM研究表明,Fe3O4纳米颗粒的平均粒径约为10nm,分散聚合所制备的磁性聚苯乙烯微球的平均粒径约为80nm;VSM研究表明,合成的Fe3O4纳米颗粒及磁性聚苯乙烯微球具有超顺磁性;FT-IR研究表明,Fe3O4纳米颗粒很好地包覆于聚苯乙烯中;XRD结果表明,分散聚合前后,Fe3O4纳米颗粒的晶体结构没有发生变化.  相似文献   

9.
甲烷气氛中激光-感应复合加热制备碳包覆纳米铝粉   总被引:1,自引:0,他引:1  
在甲烷气氛中采用激光-感应复合加热法制备了碳包覆纳米铝粉。使用XRD、TEM、HRTEM对碳包覆纳米铝粉进行物相、形貌、结构分析。结果表明,制备的纳米胶囊粒径范围为8~40nm。平均粒径28nm,纳米铝粒子表面包覆了3-4层石墨碳。对碳包覆纳米铝粉的形成机理进行了讨论。  相似文献   

10.
以FeCl3、FeSO4为铁源,利用改进共沉淀法合成磁性纳米Fe3O4,在其制备的过程中加入水合肼充当还原剂和沉淀剂,采用3-氨丙基三乙氧基硅烷(APTES),通过硅烷化反应以化学键的方式结合Fe3O4纳米颗粒,获得表面氨基化的磁性Fe3O4纳米复合颗粒。并用XRD、IR、TEM、VSM等分析手段深入研究了APTES修饰前后磁性纳米颗粒结构和性能影响。结果表明APTES成功包覆到磁性纳米粒子表面,其包覆率为21%;磁性颗粒粒径为20nm,晶型为反立方尖晶石型;磁性颗粒具有很好的分散性,其磁化率为2.36×10-6,饱和磁化强度达60.8mT。  相似文献   

11.
In this paper we studied the electrochemical behaviour of core-shell carbon-encapsulated magnetic nanoparticles (CEMNPs). CEMNPs have core diameters between 15 and 35 nm and are comprised of Fe, Fe3C and NdC2 nanoparticles encapsulated in crystalline carbon cages. Direct current cyclic voltammetry (CV) studies showed that carbon-encapsulated magnetic nanoparticles are stable in electrolyte environments. The graphitic coating perfectly isolates the encapsulated particles from the electrolyte in a wide range of potentials. CEMNP-based electrodes have low resistance (0.43-1.44 Ω cm2) and posses a specific capacity of 10-40 F g− 1, which depends on the surface area and the crystallinity. It was shown, that CEMNPs are interesting multi-functional materials with a high potential to be used in various electrochemical devices.  相似文献   

12.
碳包覆纳米磁性颗粒(CEMNPs)是一种具有核/壳结构的新型纳米复合材料,独特的理化性质使其在众多技术领域显示出巨大的应用潜力。随着全球化石能源的日渐枯竭,利用廉价、易获取、环境友好的生物质原料作为替代碳源已成为近年来CEMNPs材料的研究热点。综述了生物质基CEMNPs的制备方法、反应机理以及在电化学、催化、吸附等领域中的应用,最后展望了其发展方向和趋势。  相似文献   

13.
This study describes the synthesis of carbon-encapsulated iron nanoparticles using an ultrasonic method and also investigates their catalytic activity. These nanoparticles have been prepared using ultrasonic irradiation followed by annealing at various temperatures. As the annealing temperature of as-prepared α-Fe2O3 nanoparticles increased, the sample transformed into γ-Fe2O3, Fe3O4, and Fe nanoparticles via the reduction process without requiring any additional reducing agents such as H2 gas, thus, creating a carbon shell surrounding the nanoparticles. By controlling the experimental conditions, Fe nanoparticles of various sizes can be formed with diameters in the range 100–800 nm; these nanoparticles are tightly encapsulated by 20-nm-thick carbon shells. Because of their high saturation magnetization 212 emu g?1, the carbon-encapsulated Fe nanoparticles can be used for magnetic resonance imaging with a dramatically enhanced efficiency compared to commercially available T 2 contrast agents. Moreover, the carbon-encapsulated Fe nanoparticles showed its superior catalytic activity and reusability for the hydrogenation of biomass-derived levulinic acid to GVL (99.6 %) in liquid phase.  相似文献   

14.
In this paper, Eu(n+), Sm3+ doped Fe3O4 nanoparticles were prepared via solvothermal method, in which Ferric chloride is used as the iron source, and anhydrous EuCl3, SmCl3 as doping source. Eu, Sm valence in doped Fe3O4 nanoparticles, and effects of Eu, Sm doping amount on their structure, morphology, magnetic properties and PL properties were discussed. The results show, the Eu ions had doped Fe3O4 nanoparticles in the mixed-valence state, when the Eu and Sm doping amount were increased, the doped Fe3O4 nanoparticles changed from hollow nanospheres into spherical particles, and finally changed into uniform cube-shaped particles with 13 nm in diameter. Moreover, the doping sites for doping ions in doped Fe3O4 nanoparticles were discussed from Rietveld analysis of XRD pattern of the doped Fe3O4 nanoparticles. And the changes of the magnetic and PL properties with the doping amount were further discussed. It was found that higher Sm(3+)-doping amount led to stronger magnetic dipole transitions, while the Eu(n+)-doping amount had little effect on the magnetic dipole transitions, thus resulting in different changes in their saturation magnetization with doping amount.  相似文献   

15.
As a common organic pollutant in industrial and agricultural wastewater, p-Nitrophenol (p-NP) is difficult to be degraded naturally. Though, various methods have been developed for degradation of p-NP, the utilization of catalysts to electrochemically degrade p-NP became a novel effective way. In this article, two magnetic nanoparticles (carbon-encapsulated iron, Fe/C; carbon-encapsulated cobalt, Co/C) were prepared. Through a series of physical phase characterization, we found that the average dimension of the prepared magnetic nanoparticles arrived at 60 nm for Fe/C and 80 nm for Co/C, and within such small dimensions, the prepared nanoparticles might have some remarkable catalytic characters in electrochemical degradation of p-NP. Therefore, two novel types of Fe/C and Co/C modified glassy carbon electrodes were fabricated to investigate their catalytic activity for p-NP degradation. In our results, both of the two modified electrodes showed favorable stability and excellent electro-catalytic activity for p-NP degradation. In addition, two modified electrodes also exhibited favorable electro-catalytic reductive ability for p-NP. The electrochemical reactions on the surface of the two modified electrodes were all diffusion controlled processes. Therefore, Fe/C and Co/C were excellent bifunctional catalysts which could be considered as a practical way to be applied in industrial hydrogenation and oxidative degradation of organic compounds.  相似文献   

16.
The objective of the study was to investigate the effect of different amounts of iron oleate precursor with different oleic acid amounts on the properties of the synthesised nanoparticles by thermal decomposition. The iron oleate precursors which formed from oleic acids in the order of 0.5, 1.0, 1.5 and 2.0 g, and 0.1 g iron powder was prepared under 200 °C seperately, using a facile solvothermal method under study. Thermal analysis of iron oleat precursors by a thermogravimetric analysis (TGA) revealed that the different amount of oleic acid was seen to have an impact on the thermal properties of iron oleat complexes. During the synthesis of nanoparticles, iron oleate complex in 1-hexadecane kept refluxing for 3 h under air atmosphere resulting in the formation of nanoparticles. The fourier transform infrared spectra measurements and the TGA analysis disclosed that nanoparticles were coated with oleic acid. To the X-ray diffraction patterns, all samples are iron oxide nanocrystals and their crystal sizes increased from 6.4 to 9.8 nm with decreasing oleic acid. Also, the sizes of nanoparticles were found to be in same range as confirmed with the surface observation by a transmission electron microscope. The magnetic properties obtained from a vibrating sample magnetometer revealed that all nanoparticles are superparamagnetic at room temperature. Also, their saturation magnetizations were up to 33.2 emu/g. It is seen that the nanoparticles are superparamagnetic with the desired structural and corresponding magnetic properties and therefore, they could be thought to be convenient for biomedical applications as the particles can be transferred to aqueous phase.  相似文献   

17.
Iron oxide nanoparticles were coprecipitated in air medium using different sodium hydroxide (NaOH) concentrations, and their structural and magnetic properties were studied. It was observed that the precipitation of superparamagnetic iron oxide nanoparticles could be achieved above a critical NaOH concentration. This was followed by the investigation of the effect of the stirring rate on the structural and magnetic properties of the nanoparticles precipitated at 8.5?M NaOH and over. Morphological observation made by a transmission electron microscope (TEM) showed that the particle size of iron oxide nanoparticles was around 7.5?nm. Magnetization curves measured by a vibrating sample magnetometer showed zero coercivity indicating that the samples are superparamagnetic and the highest saturation magnetization (70.4?emu/g) was obtained at the stirring rate of 1100?rpm. The mean particle sizes of iron oxide nanoparticles calculated from the magnetization data are found to be consistent with the particle sizes obtained from the TEM images.  相似文献   

18.
The removal of AuCl4 ion from acidic aqueous solutions is studied using a series of non-oxidized and surface oxidized carbon materials (activated carbon, carbon nanotubes, carbon-encapsulated iron nanoparticles and carbon black). The studied sorbents differ in crystallinity, porosity and morphology. In the case of non-oxidized carbon materials the maximum removal efficiency (74%) is found for activated carbon, whilst graphitized nanomaterials (i.e. carbon nanotubes and carbon-encapsulated iron nanoparticles) are able to remove 42–45% of gold ion from the solution. The oxidation in nitric acid significantly improves the removal efficiencies. The uptake of Au(III) increases two times (to 91–92%) for oxidized carbon nanotubes and carbon-encapsulated iron nanoparticles. The same oxidation procedure applied to activated carbon and carbon black moderately enhances the uptake efficiency to 88% and 55%, respectively. The observed substantially distinct uptakes are discussed in the frames of textural properties, morphology, surface chemistry characteristics and crystallinity of the studied carbon materials. Moreover, the possibility of a galvanic exchange reaction between AuCl4 and metallic Fe in the carbon encapsulate core is also evaluated.  相似文献   

19.
Morphological, structural and magnetic properties of 4.8 nm iron oxide nanoparticles have been investigated after annealing under inert atmosphere at different temperatures. The as-prepared iron oxide nanoparticles have been synthesized by chemical route from high temperature reaction of Fe(acac)3 solution in presence of oleic acid and oleylamine surfactant. Annealing the particles at low temperatures (Tann = 573 K) produces an increment of the mean size from 4.8 nm to 6.0 nm, preserving the same morphology. The coercive field of the annealed sample has a small increasing with respect to the as-prepared sample in agreement with the mean particle volume change. Annealing at higher temperature (Tann = 823 K) leads to a bimodal size distribution of the iron oxide nanoparticles with 6.0 nm and 17 nm mean sizes respectively, where the bigger particles dominate the observed magnetic properties.  相似文献   

20.
The current article reports on providing surface modification of magnetic nanoparticles with gold to provide stability against aggregation. Gold-coated magnetite nanoparticles were synthesised to combine both magnetic as well as surface plasma resonance (SPR) properties in a single moiety. The nanocomposites were produced by reduction (using ascorbic acid) of gold chloride on to the surface of iron oxide nanoparticles. Ascorbic acid not only acts as a reducing agent, but also the oxidised form of ascorbic acid i.e. Dehydro-ascorbic acid acts as a capping agent to impart stability to as synthesised gold-coated iron oxide nanocomposites. The synthesised nanocomposite was monodispersed with a mean particle size of around 16 nm and polydispersity index of 0.190. X-ray diffraction analysis confirms presence of gold on the surface of magnetite nanoparticles. The synthesised nanocomposites had a total organic content of around 3.2% w/w and also showed a shifted SPR peak at 546 nm as compared to gold nanoparticles (528 nm). Both uncoated and gold-coated magnetite exhibited superparamagnetic behaviour at room temperature. Upon coating with gold shell, saturation magnetisation of iron oxide nanoparticles decreases from 42.806 to 3.54 emu/gram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号