共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of organic waste materials as nutrient sources for willow biomass production is an attractive means to decrease fertilization costs, increase biomass production and reduce greenhouse gas emissions associated with the system. In this study, changes in soil nutrients and biomass production of two willow varieties (Salix miyabeana–SX64 and Salix purpurea–9882-34) in organic and synthetic fertilized systems were compared at three locations in Northeastern U.S.A: Middlebury VT (MID), Delhi NY (DEL) and Fredonia NY (FRE). A 150 and 200 kg available N ha−1 of urea as commercial fertilizer (CF), biosolid compost (BC) and digested dairy manure (DM) and a control (CT0) treatments were applied in June 2008 to the willow which was re-sprouting after coppice. There was no significant difference (p > 0.05) in biomass production among the fertilization treatments at any of the three sites and for either of the varieties. First rotation biomass production of 9882-34 ranged from 9.0 to 11.6 Mg ha−1 yr−1 at DEL, 3.4–8.8 Mg ha−1 yr−1 at MID and 3.5–7.7 Mg ha−1 yr−1 at FRE. For SX64, biomass production ranged from 13.2 to 19.0 Mg ha−1 yr−1 at DEL, 9.0–15.0 Mg ha−1 yr−1 at Mid and 5.5–9.3 Mg ha−1 yr−1 at FRE. SX64 deployed small numbers of large stems and produced more biomass than 9882-34 which deployed large numbers of small stems. Application of BC significantly increased soil N and P levels at MID in both 2008 and 2009 (p < 0.05). At DEL, BC and DM treatments increased soil N, Ca, Mg and OM levels in both 2008 and 2009 (p < 0.05). The fertilization treatments had no significant effect on any soil nutrients at FRE. This study indicates that willow biomass can be produced without fertilizer additions in the first rotation across this range of sites due to the nutrient status of these sites and high internal nutrient cycling in these systems. 相似文献
2.
Amos K. Quaye Timothy A. VolkSasha Hafner Donald J. LeopoldCharles Schirmer 《Biomass & bioenergy》2011,35(7):2796-2806
Land application of organic wastes to short rotation woody crops (SRWC) can reduce the environmental impacts associated with waste disposal and enhance the productivity of biomass production systems. Understanding the potential impacts of organic amendments however, requires the examination of changes in soil characteristics and plant productivity. This study was conducted to evaluate the effect of paper sludge and dairy manure on biomass production of shrub willow (Salix dasyclados SV1) and to determine the impacts of these amendments on soil chemical properties. Treatments included urea, dairy manure and paper sludge separately and in combination, and a control. These materials were applied in the summer of 2005 to two fields of SV1 at different stages of growth: An old field with one year old shoots on a 10 year old root system and a young field which was beginning regrowth after being coppiced at the end of its first growing season. Foliar nutrient concentrations and soil chemical properties were analyzed at the end of the second growing season after treatment application to determine plant response to the fertilization regimes and to determine the effects of fertilization on soil characteristics. Fertilization did not increase biomass production in either field. However, application of the N-poor paper sludge did not reduce yield either. In general, fertilization did not influence soil or foliar chemistry, although there were some exceptions. The lack of response observed in this study is probably related to the nutrient status of the site or losses of applied nutrients. 相似文献
3.
《International Journal of Hydrogen Energy》2022,47(6):3667-3678
The influence of the addition of poultry manure on the thermophilic acid co-fermentation of sewage sludge and wine vinasse was studied. For this, discontinuous tests were carried out to determine the potential for hydrogen production (BHP tests) of 50:50 mixtures of sludge and wine vinasse with different amounts of poultry manure (10 g/L, 20 g/L and 30 g/L). The hydrogen production performance was determined under the tested conditions. The experimental results revealed performance values of TCOD and SCOD, TS and VS, similar in all tests, with removal efficiencies lower than 25%. Likewise, an increase in the production of volatile fatty acids was observed. Regarding the yield, the best results were obtained for the mixture with 10 g/L of poultry manure (with a C/N ratio: 27). Thus, the H2 production and the yield expressed as mL H2/gVSadded was 18.20% and 27.57% higher in the test with 10 g/L of poultry manure compared to the test with 20 g/L. Furthermore, from 20 g/L of poultry manure, the mixtures showed poorer purification behavior and performance. 相似文献
4.
Mechanism of wet sewage sludge pyrolysis in a tubular furnace 总被引:1,自引:0,他引:1
Beiping Zhang Sijiang XiongBo Xiao Dongke YuXiaoyuan Jia 《International Journal of Hydrogen Energy》2011,36(1):355-363
The main objective of this work was to develop a preliminary mechanistic understanding of wet sewage sludge decomposition from starting constituents to final products, including intermediates formed during the pyrolysis process. Sewage sludge with a moisture content of 84.2 wt% was pyrolyzed at different temperatures in a tubular furnace, the pyrolysis products (hydrogen-rich fuel gas, tar and solid char) were detected by micro-GC, GC-MS, and FTIR, respectively. The high moisture content of wet sewage sludge generated a steam-rich atmosphere at high temperatures, leading to an in situ steam reforming of the volatile compounds and a partial gasification of the solid char, which contributed to the production of hydrogen-rich fuel gas. The pyrolysis process can be divided into two steps: at a relatively low temperature (<600 °C), the breaking of the C-H bonds of alkyl gave rise to the release of CH4 and C2 hydrocarbons, and a large amount of CO and CO2 evolved as the result of CO decreasing, both processes indicated the decomposition of volatile compounds. The increasing absorbance amount of C-O and C-Haromatic demonstrated the formation of tar. As temperature increased further, the diminishing IR absorbance of C-O and C-Haromatic was accompanied by a significant reduction of tar yield and an increase of H2. H2 was considered as an indicator for the occurrence of tar cracking. The Diels-Alder reaction mechanism followed by dehydrogenation was employed to explain the PAHs formation. 相似文献
5.
An important requirement for commercialization of willow biomass production in short-rotation crop (SRC) plantations is the reliable and cost-efficient estimation of biomass yield. Predictions and simulations of willow stand biomass have been problematic due to issues with modeling the multi-stem growth form of willow. The aim of this paper was to develop a new approach for managing allometric measurements from multi-stemmed willow for stand growth simulations. The 3PG model (Physiological Principles in Predicting Growth) was parameterized for willow and was used for biomass yield simulation for an entire 22-yr cycle (seven 3-yr rotations) of willow in SRC plantations. The multi-stemmed growth form was transformed into a single-stem modeling form by deriving whole plant willow allometric relationships using detailed stem-level measurements of basal area, stem biomass and volume. 3PG model predictions for plant diameter, height, biomass, and stand biomass and volume were within the 95% confidence range of mean plot values. Model simulations showed that after seven 3-yr rotations only 20% of planted cuttings would survive (a decrease from 15,152 to 3022 plants ha−1), but stand volume would increase continuously with each subsequent rotation. 3PG predictions for cumulative (for 22 yr) aboveground biomass was 272 Mg ha−1 and mean annual yield was 12 Mg ha−1 yr−1, comparing favorably with other findings. To our knowledge, this work is the first where the 3PG model was calibrated and used for willow species. Once parameterized for a specific willow clone, 3PG can predict biomass accumulation for any agricultural land in North America using only available soil and climate data. 相似文献
6.
About 16 000 ha of commercial willow Short Rotation Coppice (SRC) fields for production of biomass for energy were planted in the early 1990s in Sweden. The cultivated with SRC area has remained almost stable and was slightly decreased during the last years despite the incentives and predictions for drastic increases. Similar incentives and predictions in other countries have been lately launched. The bioenergy produced in the planted SRC areas in Sweden has been lower than anticipated, partly due to the lower than expected biomass yields and the termination of some willow SRC plantations. Explanations for the low yields are depicted based on analyzing the results of a survey where 175 willow SRC growers participated. Lower biomass yields are attributed to: (i) the low input in management activities; (ii) the choice of land for the willow SRC plantation; (iii) and the level of personal involvement of the farmer. Understanding the reasons to earlier years’ performance of willow SRC is important for development of better performing systems in the future, in Sweden as well as in other countries. 相似文献
7.
The cultivation of bioenergy crops (BECs) represents a significant land-use change in agri-environments, but their deployment has raised important issues globally regarding possible impacts on biodiversity. Few studies however, have systematically examined the effect of commercial scale bioenergy plantations on biodiversity in agri-ecosystems. In this study we investigate how the abundance and diversity of two key components of farmland biodiversity (ground flora and winged invertebrates) varied between mature willow Short Rotation Coppice (SRC) and two alternative land-use options (arable crops and set-aside land). Although the abundance of winged invertebrates was similar across all land-uses, taxonomic composition varied markedly. Hymenoptera and large Hemiptera (>5 mm) were more abundant in willow SRC than in arable or set-aside. Similarly although plant species richness was greater in set-aside, our data show that willow SRC supports a different plant community to the other land-uses, being dominated by competitive perennial species such as Elytrigia repens and Urtica dioica. Our results suggest that under current management practices a mixed farming system incorporating willow SRC can benefit native farm-scale biodiversity. In particular the reduced disturbance in willow SRC allows the persistence of perennial plant species, potentially providing a stable refuge and food sources for invertebrates. In addition, increased Hymenoptera abundance in willow SRC could potentially have concomitant effects on ecosystem processes, as many members of this Order are important pollinators of crop plants or otherwise fulfil an important beneficial role as predators or parasites of crop pests. 相似文献
8.
You-Hsin Chen Thi Ngoc Lan Thao Ngo Kung-Yuh Chiang 《International Journal of Hydrogen Energy》2021,46(27):14083-14095
This research provides a perspective on sludge-to-energy using sewage sludge (SS) and industrial wastewater sludge (IS) co-gasification in a pilot-scale fluidized bed gasifier with temperature controlled at (600–800 °C) using IS addition ratio (0%–60%), and steam-to-biomass ratio (S/B) (0–1.0). The experimental results show that the increase in thermal reaction activity occurred in concordance with the increase in the IS addition. The explanation for such phenomena is that relatively high catalytic Fe/Mn content in industrial wastewater sludge could lower the activation energy. Hydrogen production was increased from 9.1% to 11.94% with an increase in industrial wastewater sludge ratios from 0% to 60%. The produced gas heating value ranged from 4.84 MJ/Nm3 to 5.11 MJ/Nm3, which was coupled with the cold gas efficiency (CGE) ranging from 33.91% to 36.15%. Enhanced hydrogen production in sewage sludge and industrial wastewater sludge co-gasification is investigated in this study. 相似文献
9.
During its pioneer-stage in Germany, the generation of power and heat from anaerobic digestion (AD) was predominantly developed on organic farms. However, biogas production in organic agriculture (OR) never expanded to the same extent as in conventional farming (CV). Besides various other aspects, this appears to be mainly due to economic reasons related to system-specific production requirements. Therefore, this article analyses the framework conditions of organic biogas generation and assesses its monetary implications on production economics. The structural and economic comparison of organic and conventional generation of power from biogas displays systematic constraints for AD in OR and identifies advantages of conventional biogas plants, particularly concerning lower capital and biomass input costs. Moreover, frequently changing policy regulations, further aggravating the economic situation for biogas production in both farming systems, are reflected. Our study shows that the recent developments of political frameworks will inhibit biogas investments for nearly all types of biogas plants in Germany. Finally, an alternative evaluation approach for organic AD systems, considering monetary benefits from agronomic effects of an integrated biogas generation in organic agriculture is discussed. 相似文献
10.
A pyrolysis gasifier, with carbonization and activation steps, was developed to convert dried sludge into activated char and gas fuel energy. To determine the optimal driving conditions, parametric investigations were conducted on the amount of steam input, pyrolysis gasifier temperature and moisture content in the dried sludge. 相似文献
11.
This questionnaire analyzed the ongoing development of sustainability criteria for solid and liquid bioenergy in the European Union and further actions needed to come to a harmonization of certification systems, based on EU stakeholder views. The questionnaire, online from February to August 2009, received 473 responses collected from 25 EU member countries and 9 non-European countries; 285 could be used for further processing. A large majority of all stakeholders (81%) indicated that a harmonized certification system for biomass and bioenergy is needed, albeit some limitations. Amongst them, there is agreement that (i) a criterion on ‘minimization of GHG emissions’ should be included in a certification system for biomass and bioenergy, (ii) criteria on optimization of energy and on water conservation are considered of high relevance, (iii) the large variety of geographical areas, crops, residues, production processes and end-uses limits development towards a harmonized certification system for sustainable biomass and bioenergy in Europe, (iv) making better use of existing certification systems and standards improves further development of a harmonized European biomass and bioenergy sustainability certification system and (v) it is important to link a European certification system to international declarations and to expand such a system to other world regions. 相似文献
12.
This investigation deals with the biomass production of coppiced mixed birch and willow stands growing on a peat cut-away area at Aitoneva, Kihniö (62°12′N, 23°18′E), Finland. The 16-year-old stands were harvested and left to coppice for 14 years, fertilization experiment (control, PK and wood ash fertilization) with three replications was established after the clear cutting. The mother stands before clear cutting (11,000 stems per hectare on average) were dominated by silver birch (69% of the stem number). After clear cutting the number of stems rose 7-fold to 75 500 stems ha−1. Now the stands were dominated by Betula pubescens with 46% out of the total stem number, the share of B. pendula being only 25% and with Salix spp 29%. At the age of 14 years self-thinning had decreased the stem number to 12,800 stems ha−1. The leafless biomass production of the coppiced stands on the control plots was lower than that of the seed originated mother stands had been during the previous rotation. However, with fertilization the 14-year-old coppiced stands reached the same total production as the 16-year-old mother stands had reached. The foliar phosphorus concentrations showed a severe phosphorus deficiency on the controls. Fertilization increased biomass of the stands considerably. After 14 growing seasons the above-ground leafless dry-mass of the fertilized stands was 61.8 (PK-fertilization) and 61.4 t ha−1 (Ash) and that of the control stands 37.6 t ha−1. A single PK fertilizer application had increased the standing biomass by 24 t ha−1 (64%). Even though fertilization increased biomass production it did not increase nutrient concentrations of wood and bark, but rather decreased them. Fertilization decreased the nitrogen concentrations of leafless above-ground biomass. 相似文献
13.
Adding nutrient-rich residues such as municipal wastewater and sludge to willow and poplar short-rotation coppice gives more cost-effective and sustainable cultivation, but leaching to groundwater and disturbance to plant growth must be avoided. The effects of adding municipal wastewater irrigation to willows and poplars and sewage sludge to willows were compared in a two-year experiment. Wastewater irrigation enhanced plant growth. Near-zero nitrate-N concentrations occurred in drainage water when the root system of both species was well-established. The ability to retain N and P was satisfactory when poplars and willows were irrigated with wastewater. Thus relatively high additions of N and P with wastewater will probably not contaminate groundwater, but potential P leaching should not be underestimated. The same applies for sewage sludge applications to willow. 相似文献
14.
研究了污泥干化设备的干化效率以及干化污泥掺烧后对300 MW燃煤锅炉的影响。通过对污泥干化设备的物料和能量平衡计算发现其干化效率达到了89.5%;通过污泥的不同掺烧比例试验,分析了掺烧干化污泥后对烟气和飞灰中二恶英和重金属含量、烟气中SO2等以及其他运行情况的影响,结论表明掺烧一定比例的污泥对锅炉的正常运行没有明显影响,而且添加适当比例的污泥可以优化锅炉的运行,对环境保护方面的贡献不言而喻。 相似文献
15.
Yunan Chen Liejin GuoHui Jin Jiarong YinYoujun Lu Ximin Zhang 《International Journal of Hydrogen Energy》2013
The gasification of sewage sludge in near and super-critical water was investigated in a batch reactor. Results showed that the formation of gaseous products could be intensively affected by temperature. In order to understand the effect of temperature on the development of reaction process and the formation of gaseous products better, the detailed characteristics of solid and liquid products were analyzed by SEM, N2 adsorption–desorption technique, FTIR, TOC, Ammonia–nitrogen analysis and SPE-GC/MS. The changes in the yield distribution of products and the characteristics of solid and liquid products indicated that organic matters in sewage sludge were almost completely dissolved and hydrolyzed in water at 425 °C. The dissolution and hydrolysis products were gasified by reforming and other reactions. The polymerization and dehydrogenation also occurred in dissolution and hydrolysis products, and the Diels–Alder reaction mechanism could be used to explain the phenomenon. 相似文献
16.
In order to produce a clean producer gas, the air gasification of dried sewage sludge was conducted in a two-stage gasifier that consisted of a bubbling fluidized bed and a tar-cracking zone. The kind and amount of bed materials, the kind of additives in the upper-reactor, and the moisture content in the sewage sludge were selected as operating variables in order to investigate their effects on the development of the producer gas characteristics. In our experiments, the gasification of a dried sewage sludge sample containing 30 wt.% of moisture with a combination of calcined dolomite as the bed material and activated carbon in the tar-cracking zone removed the most tar and produced the highest hydrogen concentration. The total tar removal efficiency and the H2 content in the producer gas from the sample noted above reached 88.4% and 32.1 vol.%, respectively. The LHVs of all the producer gases were high with values above 7 MJ Nm−3. 相似文献
17.
The development of the willow cultivation for bioenergy in the municipality of Enköping was analysed, with special attention to the changes in the capacity and use of wood fuels of the municipality’s combined power and heat plant, during the period 1986-2005. The evolution is compared with the municipality of Örebro, in Central Sweden, a pioneer in the use of willow plantations. The study was performed including the geographical location of all the plantations and owners using a GIS platform, and a methodology based on n-sigmoidal curves was proposed to study the adoption curves of willow before and after the changes in the district heating plant. The results show significant enlargements of the area planted with willow observed after the enlargement of the plant in 1994; most of these new plantations being located within 30 km from the plant. The method applied seems to be suited to explain the effects in adoption of the power plant. Around 28% of the growers seem to be attributed to the effects of the plant. The results of this study provide empirical evidence of the effect of the district heating systems on the development and promotion of willow plantations. The methodology provided can be valuable in understanding the success or failure of the energy programmes, from the farmer’s perspective, and can aid policy makers in achieving their goals. 相似文献
18.
Economic analysis of renewable heat and electricity production by sewage sludge digestion—a case study 下载免费PDF全文
In this paper, we assess the total cost of energy recovery from sewage sludge through anaerobic digestion with biogas utilization in combined heat and power (CHP) system. The important advantage of anaerobic digestion process is the production of biogas, which can be used to generate electricity and heat as a source of renewable energy. From this study, it can be retained that the generated thermal energy from the anaerobic digestion process meets the needs of the wastewater treatment plant (WWTP) and guarantees its self‐sufficiency in heat. The surplus of renewable heat produced by CHP is not a primary factor to improve the economic viability of the process. Moreover, the sales of electricity output represent about 76% of the operating costs of anaerobic digestion process. Renewable energy production is not economically viable by its own, without considering the wastewater treatment function and the associated incomes. Nevertheless, sludge digestion helps to reduce the wastewater treatment costs mainly by giving a good source of revenue via electricity production. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
《International Journal of Hydrogen Energy》2019,44(4):2170-2179
At ambient temperature (25 °C), bioelectrochemical anaerobic digestion of sewage sludge was investigated with a hydraulic retention time (HRT) of 10 days and compared to that at a mesophilic condition (35 °C). The methane production and methane content in the biogas at ambient temperature were 612.8 mL/L·d and 73.3%, respectively, which were not significantly lower than that of the mesophilic condition. Additionally, the VS removal was 54.5% which was similar for both temperature conditions. However, for a HRT of 20 days, the bioelectrochemical anaerobic digestion at ambient temperature became more stable, and the VS removal improved up to 65.0%. For the HRT of 10 days, the net energy production at ambient temperature was about 168 kJ/L·d, which was similar to the mesophilic condition; however, the apparent energy efficiency at ambient temperature was 249.2% which was significantly higher than 197.7% at the mesophilic condition. The bioelectrochemical anaerobic digestion that can save the thermal energy input at ambient temperature is recommended for the treatment of organic waste including sewage sludge in moderate and cold climate regions. 相似文献
20.
《International Journal of Hydrogen Energy》2022,47(27):13289-13299
This study aims to study the methane generation potential (BMP tests) of different samples from the dark acid fermentation of sewage sludge:wine vinasse, and sewage sludge:wine vinasse:poultry manure. Specifically, mixtures of sewage sludge (S) and wine vinasse (V) were used in a 50:50 ratio and mixtures of sewage sludge and wine vinasse with 10 g/L of poultry manure (PM) (50:50 + 10 g/L) (S:V + PM). The goal was to determine the effect of the high ammonia concentrations in poultry manure when was used as co-substrate in the anaerobic methanogenic degradation of sewage sludge and vinasse. Results obtained show that the addition of 10 g/L of poultry manure to the SV mixture improves the production of methane generation, reaching values of 166 mL of accumulated methane. The SVPM mixture shows the highest purification percentages, with 63.90% TCOD removal, 79.51% SCOD removal and a yield of 52.05 mLCH4/gSVadded. The SVPM test showed a higher concentration of microorganisms during the BMP test, although the population of microorganisms for the SV test was doubled and presented greater activity with values of 2.27 versus 1.73E-11 LCH4/Cells. 相似文献