首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, wireless sensor networks have been a very popular research topic, offering a treasure trove of systems, networking, hardware, security, and application-related problems. Distributed nature and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. The problem is more critical if its purpose is for some mission-critical applications such as in a tactical battlefield. This paper presents a security scheme for group-based distributed wireless sensor networks. Our first goal is to devise a group-based secure wireless sensor network. We exploit the multi-line version of matrix key distribution technique and Gaussian distribution to achieve this goal. Secondly, security mechanisms are proposed for such a group-based network architecture in which sensed data collected at numerous, inexpensive sensor nodes are filtered by local processing on its way through more capable and compromise-tolerant reporting nodes. We address the upstream requirement that reporting nodes authenticate data produced by sensors before aggregating and the downstream requirement that sensors authenticates commands disseminated from reporting nodes. Security analysis is presented to quantify the strength of the proposed scheme against security threats. Through simulations, we validate the analytical results.  相似文献   

2.
A wireless sensor network should be able to operate for long periods of time with little or no external management. There is a requirement for this autonomy: the sensor nodes must be able to configure themselves in the presence of adverse situations. Therefore, the nodes should make use of situation awareness mechanisms to determine the existence of abnormal events in their surroundings. This work approaches the problem by considering the possible abnormal events as diseases, thus making it possible to diagnose them through their symptoms, namely, their side effects. Considering these awareness mechanisms as a foundation for high-level monitoring services, this article also shows how these mechanisms are included in the blueprint of an intrusion detection system.  相似文献   

3.
Energy efficiency sleep scheduling in wireless sensor networks is one of the most crucial technologies.In this paper,we propose a simple and feasible synchronous node sleeping and waking mechanisms for small scale wireless sensor networks.Sensor nodes are divided into forwarding nodes and listening nodes.Beacon frame containing sleep command from the coordinator can be forwarded to listening nodes via forwarding nodes.All the nodes in the network can enter sleep at about the same time.Through such network s...  相似文献   

4.
《信息技术》2015,(7):48-51
针对短波通信在传输过程中连通率低及容易遭受敌方截获和攻击的缺点,提出一种基于IBC体系的短波自组网密钥管理方案。该方案采用对称加密技术保证报文加解密的效率;运用公钥密码体制强安全性保证种子密钥的安全协商;引入Hash函数对报文进行认证,验证报文的真实性与完整性;基于通信双方的一次一密加密体制,保证密文的安全传输。实验结果表明,该方案能有效抵御敌方的攻击,保证网络的安全通信。  相似文献   

5.
Using partitioning in sensor networks to create clusters for routing, data management, and for controlling communication has been proven as a way to ensure long range deployment and to deal with sensor network shortcomings such as limited energy and short communication ranges. Choosing a cluster head within each cluster is important because cluster heads use additional energy for their responsibilities and that burden needs to be carefully passed around among nodes in a cluster. Many existing protocols either choose cluster heads randomly or use nodes with the highest remaining energy. We present an Energy Constrained minimum Dominating Set based efficient clustering called ECDS to model the problem of optimally choosing cluster heads with energy constraints. Our proposed randomized distributed algorithm for the constrained dominating set runs in O(log n log Δ) rounds with high probability where Δ is the maximum degree of a node in the graph. We provide an approximation ratio for the ECDS algorithm of expected size 8HΔOPT∣ and with high probability a size of O(∣OPT∣log n) where n is the number of nodes, H is the harmonic function and OPT means the optimal size. We propose multiple extensions to the distributed algorithm for the energy constrained dominating set. We experimentally show that these extensions perform well in terms of energy usage, node lifetime, and clustering time in comparison and, thus, are very suitable for wireless sensor networks.  相似文献   

6.
Sensor network deployment is very challenging due to hostile and unpredictable nature of usage environments. In this letter, we propose two methods for the self-deployment of mobile sensors. The first one is a randomized solution that provides both simplicity and applicability to different environments. Inspired by simulated annealing, it improves both speed and energy conservation of the deployment process. The other method is suggested for environments where sensors form a connected graph, initially. At the cost of this extra limitation, we gain considerable improvements.  相似文献   

7.
Virtual multiple input multiple output (MIMO) techniques are used for energy efficient communication in wireless sensor networks. In this paper, we propose energy efficient routing based on virtual MIMO. We investigate virtual MIMO for both fixed and variable rates. We use a cluster based virtual MIMO cognitive model with the aim of changing operational parameters (constellation size) to provide energy efficient communication. We determine the routing path based on the virtual MIMO communication cost to delay the first node death. For larger distances, the simulation results show that virtual MIMO (2×2) based routing is more energy efficient than SISO (single input single output) and other MIMO variations.  相似文献   

8.
卫琪 《电子测试》2011,(4):86-90
针对LEACH协议存在的3大问题:簇头选举时未考虑节点剩余能量、频繁成簇造成了大量额外能耗以及欠缺对簇间能耗均衡的考虑,提出了能量有效分簇路由协议(LEACH-improved).该协议中,首轮成簇后网络中簇的分布和数量将保持不变,以后每轮各簇的簇头由上一轮簇头结合节点的能量水平来指定,借鉴泛洪算法的思想,在簇间建立多...  相似文献   

9.
10.
Energy balanced data propagation in wireless sensor networks   总被引:1,自引:0,他引:1  
We study the problem of energy-balanced data propagation in wireless sensor networks. The energy balance property guarantees that the average per sensor energy dissipation is the same for all sensors in the network, during the entire execution of the data propagation protocol. This property is important since it prolongs the network’:s lifetime by avoiding early energy depletion of sensors. We propose a new algorithm that in each step decides whether to propagate data one-hop towards the final destination (the sink), or to send data directly to the sink. This randomized choice balances the (cheap) one-hop transimssions with the direct transimissions to the sink, which are more expensive but “bypass” the sensors lying close to the sink. Note that, in most protocols, these close to the sink sensors tend to be overused and die out early. By a detailed analysis we precisely estimate the probabilities for each propagation choice in order to guarantee energy balance. The needed estimation can easily be performed by current sensors using simple to obtain information. Under some assumptions, we also derive a closed form for these probabilities. The fact (shown by our analysis) that direct (expensive) transmissions to the sink are needed only rarely, shows that our protocol, besides energy-balanced, is also energy efficient. This work has been partially supported by the IST/FET/GC Programme of the European Union under contract numbers IST-2001-33135 (CRESCCO) and 6FP 001907 (DELIS). A perliminary version of the work appeared in WMAN 2004 [11]. Charilaos Efthymiou graduated form the Computer Engineering and Informatics Department (CEID) of the University of Patras, Greece. He received his MSc from the same department with advisor in S. Nikoletseas. He currently continuous his Ph.D studies in CEID with advisor L. Kirousis. His research interest include Probabilistic Techniques and Random Graphs, Randomized Algorithms in Computationally Hard Problems, Stochastic Processes and its Applications to Computer Science. Dr. Sotiris Nikoletseas is currently a Senior Researcher and Managing Director of Research Unit 1 (“Foundations of Computer Science, Relevant Technologies and Applications”) at the Computer Technology Institute (CTI), Patras, Greece and also a Lecturer at the Computer Engineering and Informatics Department of Patras University, Greece. His research interests include Probabilistic Techniques and Random Graphs, Average Case Analysis of Graph Algorithms and Randomized Algorithms, Fundamental Issues in Parallel and Distributed Computing, Approximate Solutions to Computationally Hard Problems. He has published scientific articles in major international conferences and journals and has co-authored (with Paul Spirakis) a book on Probabilistic Techniques. He has been invited speaker in important international scientific events and Universities. He has been a referee for the Theoretical Computer Science (TCS) Journal and important international conferences (ESA, ICALP). He has participated in many EU funded R&D projects (ESPRIT/ALCOM-IT, ESPRIT/GEPPCOM). He currently participates in 6 Fifth Framework projects: ALCOM-FT, ASPIS, UNIVERSAL, EICSTES (IST), ARACNE, AMORE (IMPROVING). Jose Rolim is Full Professor at the Department of Computer Science of the University of Geneva where he leads the Theoretical Computer Science and Sensor Lab (TCSensor Lab). He received his Ph.D. degree in Computer Science at the University of California, Los Angeles working together with Prof. S. Greibach. He has published several articles on the areas of distributed systems, randomization and computational complexity and leads two major projects on the area of Power Aware Computing and Games and Complexity, financed by the Swiss National Science Foundation. Prof. Rolim participates in the editorial board of several journals and conferences and he is the Steering Committee Chair and General Chair of the IEEE Distributed Computing Conference in Sensor Systems.  相似文献   

11.
The rapid advances in processor, memory, and radio technology enable the development of small, inexpensive sensor nodes that are capable of sensing, computation, and communication. However, the severe energy constraints of the sensors present major challenges for long-term applications. In order to achieve sustainability, environmental energy harvesting has been demonstrated as a promising approach. In this work, the energy utilization scheme is investigated for wireless sensor networks with energy harvesting nodes. The energy utilization system is divided to three parts: energy harvesting, energy consuming and energy storage. Then the sustainability problem is formulated as an energy flow control problem. An energy flow control system, called EFCon, is proposed to keep the balance between energy supplies and demands. EFCon consists of two phases, energy flow direction control and flow rate control. In the phase of energy flow direction control, the system dynamically switches among four patterns: flood flow, direct flow, compensate flow, and backup flow, according to current environmental energy condition and the residual energy condition. Once the energy flow direction is determined, a corresponding energy flow rate control strategy will be adopted for efficient energy utilization. The EFCon is implemented and validated by a long-term deployment in real testbeds. The experimental results indicate that the EFCon outperforms existing designs.  相似文献   

12.
In wireless sensor network (MSN), reliability is the main issue to design any routing technique. To design a comprehensive reliable wireless sensor network, it is essential to consider node failure and energy constrain as inevitable phenomena. In this paper we present energy efficient node fault diagnosis and recovery for wireless sensor networks referred as energy efficient fault tolerant multipath routing scheme for wireless sensor network. The scheme is based on multipath data routing. One shortest path is used for main data routing in our scheme and other two backup paths are used as alternative path for faulty network and to handle the overloaded traffic on main channel. Shortest pat data routing ensures energy efficient data routing. Extensive simulation results have revealed that the performance of the proposed scheme is energy efficient and can tolerates more than 60% of fault.  相似文献   

13.
Energy saving and fast responding of data gathering are two crucial factors for the performance of wireless sensor networks. A dynamic tree based energy equalizing routing scheme (DTEER) was proposed to make an effort to gather data along with low energy consumption and low time delay. DTEER introduces a dynamic multi-hop route selecting scheme based on weight-value and height-value to form a dynamic tree and a mechanism similar to token passing to elect the root of the tree. DTEER can simply and rapidly organize all the nodes with low overhead and is robust enough to the topology changes. When compared with power-efficient gathering in sensor information systems (PEGASIS) and the hybrid, energy- efficient, distributed clustering approach (HEED), the simulation results show that DTEER achieves its intention of consuming less energy, equalizing the energy consumption of all the nodes, alleviating the data gathering delay, as well as extending the network lifetime perfectly.  相似文献   

14.
The energy problem in wireless sensor networks remains one of the major barriers preventing the complete exploitation of this technology. Sensor nodes are typically powered by batteries with a limited lifetime, and even when additional energy can be harvested from the external environment, it remains a limited resource to be consumed judiciously. Efficient energy management is thus a key requirement, with most strategies assuming that data acquisition consumes significantly less energy than data transmission. When this assumption does not hold, effective energy management strategies should include policies for an efficient use of energy-hungry sensors.  相似文献   

15.
In the last years, wireless sensor networks (WSNs) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifetime can be extended to reasonable times. In this paper we first break down the energy consumption for the components of a typical sensor node, and discuss the main directions to energy conservation in WSNs. Then, we present a systematic and comprehensive taxonomy of the energy conservation schemes, which are subsequently discussed in depth. Special attention has been devoted to promising solutions which have not yet obtained a wide attention in the literature, such as techniques for energy efficient data acquisition. Finally we conclude the paper with insights for research directions about energy conservation in WSNs.  相似文献   

16.
对无线传感网络安全进行鉴别,可有效保障网络稳定运行。传统鉴别系统存在鉴别时延长、安全性较低的问题,提出并设计了基于CA技术的无线传感网络安全自动鉴别系统。根据系统总体设计框架,设计硬件结构与软件功能。架构系统硬件框图添加CA服务器和Web服务器,增强用户身份信息的传递速度,保证用户身份的快速认证。系统软件设计主要分为客户端模块、证书解析模块、访问控制模块及认证中心模块,根据软件设计流程,利用CA技术对用户证书进行认证,完成无线传感网络安全的自动鉴别系统设计。实验结果表明,文中系统的认证时间较短,且安全性高于传统系统20%,满足了系统的及时性和安全性要求。  相似文献   

17.
Energy-efficient DSPs for wireless sensor networks   总被引:2,自引:0,他引:2  
There are many new challenges to be faced in implementing signal processing algorithms and designing energy-efficient DSPs for microsensor networks. We study system partitioning of computation to improve the energy efficiency of a wireless sensor networking application. We explore system partitioning between the sensor cluster and the base station, employing computation-communication tradeoffs to reduce energy dissipation. Also we show that system partitioning of computation within the cluster can also improve the energy efficiency by using dynamic voltage scaling (DVS)  相似文献   

18.
Localization systems for wireless sensor networks   总被引:2,自引:0,他引:2  
Monitoring applications define an important class of applications used in wireless sensor networks. In these applications the network perceives the environment and searches for event occurrences (phenomena) by sensing different physical properties, such as temperature, humidity, pressure, ambient light, movement, and presence (for target tracking). In such cases the location information of both phenomena and nodes is usually required for tracking and correlation purposes. In this work we summarize most of the concepts related to localization systems for WSNs as well as how to localize the nodes in these networks (which allows the localization of phenomena). By dividing the localization systems into three distinct components -distance/angle estimation, position computation, and localization algorithm - besides providing a didactic viewpoint, we show that these components can be seen as subareas of the localization problem that need to be analyzed and studied separately.  相似文献   

19.
The design of media access control (MAC) protocol for wireless sensor networks (WSNs) with the idea of cross layer attracts more and more attention. People can improve the MAC protocol by obtaining certain information regarding the network layer and physical layer. This article synthesizes and optimizes certain cross-layer protocols which have existed. On the basis of the routing, topology information in the network layer, and transmission power information in the physical layer, the time slot assignment algorithm has been improved in the MAC layer. By using geographical adaptive fidelity algorithm (GAF) to divide the grids, controlling of transmission power and scheduling the work/sleep duty cycle for sensor nodes, a new MAC protocol has been proposed to decrease energy consumption and enlarge the lifetime of WSNs. Simulation results show that the MAC protocol functions well.  相似文献   

20.
Information coverage for wireless sensor networks   总被引:6,自引:0,他引:6  
Coverage is a very important issue in wireless sensor networks. Current literature defines a point to be covered if it is within the sensing radius of at least one sensor. In this paper we argue that this is a conservative definition of coverage. This definition implicitly assumes that each sensor makes a decision independent of other sensors in the field. However, sensors can cooperate to make an accurate estimation, even if any single sensor is unable to do so. We then propose a new notion of information coverage and investigate its implications for sensor deployment. Numerical and simulation results show that significant savings in terms of sensor density for complete coverage can be achieved by using our definition of information coverage compared to that by using the existing definition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号