首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of oxidation, ignition, and combustion of Gas-to-Liquid (GtL) Fischer–Tropsch Synthetic kerosene as well as of a selected GtL-surrogate were studied. New experimental results were obtained using (i) a jet-stirred reactor – species profiles (10 bar, constant mean residence time of 1 s, temperature range 550–1150 K, equivalence ratios φ = 0.5, 1, and 2), (ii) a shock tube – ignition delay time (≈16 bar, temperature range 650–1400 K, φ = 0.5 and 1), and (iii) a burner – laminar burning velocity (atmospheric pressure, preheating temperature = 473 K, 1.0 ? φ ? 1.5). The concentrations of the reactants, stable intermediates, and final products were measured as a function of temperature in the jet-stirred reactor (JSR) using probe sampling followed by on-line Fourier Transformed Infra-Red spectrometry, and gas chromatography analyses (on-line and off-line). Ignition delay times behind reflected shock waves were determined by measuring time-dependent CH* emission at 431 nm. Laminar flame speeds were obtained in a bunsen-type burner by applying the cone angle method. Comparison with the corresponding results for Jet A-1 showed comparable combustion properties. The GtL-fuel oxidation was modeled under these conditions using a detailed chemical kinetic reaction mechanism (8217 reactions vs. 2185 species) and a 3-component model fuel mixture composed of n-decane, iso-octane (2,2,4-trimethyl pentane), and n-propylcyclohexane. The model showed good agreement with concentration profiles obtained in a JSR at 10 bar. In the high temperature regime, the model represents well the ignition delay times for the fuel air mixtures investigated; however, the calculated delays are longer than the measurements. It was observed that the ignition behavior of the surrogate fuel is mainly influenced by n-alkanes and not by the addition of iso-alkanes and cyclo-alkanes. The simulated laminar burning velocities were found in excellent agreement with the measurements. No deviation between burning velocity data for the GtL-surrogate and GtL was seen, within the uncertainty range. The presented data on ignition delay times and burning velocities agree with earlier results obtained for petrol-derived jet fuel. The suitability of both the current detailed reaction model and the selected GtL surrogate was demonstrated. Finally, our results support the use of the GtL fuel as an alternative jet fuel.  相似文献   

2.
Experimental and modeling study of the oxidation of n-butylbenzene   总被引:1,自引:0,他引:1  
New experimental results for the oxidation of n-butylbenzene, a component of diesel fuel, have been obtained using three different devices. A rapid compression machine has been used to measure autoignition delay times after compression at temperatures in the range 640–960 K, at pressures from 13 to 23 bar, and at equivalence ratios from 0.3 to 0.5. Results show low-temperature behavior, with the appearance of cool flames and a negative temperature coefficient (NTC) region for the richest mixtures. To investigate this reaction at higher temperatures, a shock tube has been used. The shock tube study was performed over a wide range of experimental temperatures, pressures, and equivalence ratios, with air used as the fuel diluent. The ignition temperatures were recorded over the range 980–1740 K, at reflected shock pressures of 1, 10, and 30 atm. Mixtures were investigated at equivalence ratios of 0.3, 0.5, 1.0 and 2.0 in order to determine the effects of fuel concentration on reactivity over the entire temperature range. Using a jet-stirred reactor, the formation of numerous reaction products has been followed at temperatures from 550 to 1100 K, at atmospheric pressure, and at equivalence ratios of 0.25, 1.0, and 2.0. Slight low-temperature reactivity (below 750 K) with a NTC region has been observed, especially for the leanest mixtures. A detailed chemical kinetic model has been written based on rules similar to those considered for alkanes by the system EXGAS developed at Nancy. Simulations using this model have been compared to the experimental results presented in this study, but also to results in the literature obtained in a jet-stirred reactor at 10 bar, in the same rapid compression machine for stoichiometric mixtures, in a plug flow reactor at 1069 K and atmospheric pressure, and in a low-pressure (0.066 bar) laminar premixed methane flame doped with n-butylbenzene. The observed agreement is globally better than that obtained with models from the literature. Flow rate and sensitivity analyses have revealed a preponderant role played by the addition to molecular oxygen of resonantly stabilized, 4-phenylbut-4-yl radicals.  相似文献   

3.
The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.  相似文献   

4.
i-Butanol (iC4H9OH) pyrolysis has been studied in a flow reactor with synchrotron vacuum ultraviolet photoionization mass spectrometry combined with molecular-beam sampling technique. The pyrolysis species were identified and their mole fractions were determined. Three pressures of 30, 150 and 760 Torr were selected to study the pressure effect of i-butanol chemistry. A detailed kinetic model consisting of 186 species and 1294 reactions was developed to simulate i-butanol high temperature chemistry. To enhance the accuracy, the model was further validated by the species profiles in shock tube pyrolysis, laminar premixed flames, oxidation data from jet-stirred reactor, ignition delay times, and flame speeds. Good agreement between the predicted and measured results was obtained.  相似文献   

5.
Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of CH bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (CH3) will decrease laminar burning velocity. Hydroxyl functional group (OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal CH bonds have larger bond energies than that of inner CH bonds. n-Butanol, no branching and with hydroxyl functional group (OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect on flame instability is observed for the isomers of butanol. Critical flame radii are the same for the isomers of butanol. Peclet number decreases with the increase in equivalence ratio.  相似文献   

6.
To better understand the chemistry of the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with indane has been investigated. The inlet gases contained 7.1% (molar) of methane, 36.8% of oxygen and 0.9% of indane corresponding to an equivalence ratio of 0.67 and a ratio C10H14/CH4 of 12.8%. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as diluent, with a gas velocity at the burner of 49.1 cm s−1 at 333 K. Quantified species included the usual methane C0-C2 combustion products, but also 16 C3-C5 non-aromatic hydrocarbons, 6 C1-C3 non-aromatic oxygenated compounds, as well as 22 aromatic products, namely benzene, toluene, xylenes, phenylacetylene, ethylbenzene, styrene, propenylbenzene, allylbenzene, n-propylbenzene, methylstyrenes, ethyltoluenes, trimethylbenzenes, n-butylbenzene, dimethylethylbenzene, indene, methylindenes, methylindane, benzocyclobutene, naphthalene, phenol, benzaldehyde, and benzofuran. A new mechanism for the oxidation of indane was proposed whose predictions were in satisfactory agreement with measured species profiles in both flames and jet-stirred reactor experiments. The main reaction pathways of consumption of indane have been derived from flow rate analyses in the two types of reactors. A comparison of the effect of the addition of three components of diesel fuel, namely indane, n-butylbenzene and n-propylcyclohexane (parts I and II of this series of paper), on the structure of a laminar lean premixed methane flame is also presented.  相似文献   

7.
In an effort to understand the oxidation chemistry of new generation biofuels, oxidation of a pentanol isomer (2-methyl-1-butanol) was investigated experimentally in a jet-stirred reactor (JSR) at a pressure of 10 atm, equivalence ratios of 0.5, 1, 2 and 4 and in a temperature range of 700–1200 K. Concentration profiles of the stable species were measured using GC and FTIR. A detailed chemical kinetic mechanism including oxidation of various hydrocarbon and oxygenated fuels was extended to include the oxidation chemistry of 2-methyl-1-butanol, the resulting mechanism was used to simulate the present experiments. In addition to the present data, recent experimental data such as ignition delay times measured in a shock tube and laminar flame speeds were also simulated with this mechanism and satisfactory results were obtained. Reaction path and sensitivity analyses were performed in order to interpret the results.  相似文献   

8.
The effects of low pressure on the laminar burning velocity and flame stability of H2/CO mixtures and equimolar H2/CO mixtures diluted with N2 and CO2 were studied experimentally and theoretically. Experiments were conducted at real sub-atmospheric conditions in three places located at high altitudes 500 m.a.s.l. (0.947 atm), 1550 m.a.s.l. (0.838 atm), and 2300 m.a.s.l. (0.767 atm). Flames were generated using contoured slot-type nozzle burners and Schlieren images were used to determine the laminar burning velocity with the angle method. The behavior of the laminar burning velocity at low pressures depends on the equivalence ratio considered; it decreases at lean and very rich equivalence ratios when pressure is increased. However, a contrary behavior was obtained at equivalence ratios corresponding to the highest values of the laminar burning velocity, where it increases as pressure increases. Numerical calculations were also conducted using a detailed reaction mechanism, and these do not reproduce the behavior obtained experimentally; a sensitivity analysis was carried out to examine the differences found. At lean equivalence ratios, flame instabilities were observed for all the syngas mixtures. The range of equivalence ratios where flames are stable increases at lower pressures. This behavior is due to the increase of the flame thickness, which considerably reduces the hydrodynamic instabilities in the flame front.  相似文献   

9.
The chemical species composition of a vitiated oxidizer stream can significantly affect the combustion processes that occur in many propulsion and power generation systems. Experiments were performed to investigate the chemical kinetic effects of vitiation on ignition and flame propagation of hydrocarbon fuels using propane. Atmospheric-pressure flow reactor experiments were performed to investigate the effect of NOx on propane ignition delay time at varying O2 levels (14–21 mol%) and varying equivalence ratios (0.5–1.5) with reactor temperatures of 875 K and 917 K. Laminar flame speed measurements were obtained using a Bunsen burner facility to investigate the effect of CO2 dilution on flame propagation at an inlet temperature of 650 K. Experimental and modeling results show that small amounts of NO can significantly reduce the ignition delay time of propane in the low- and intermediate-temperature regimes. For example, 755 ppmv NOx in the vitiated stream reduced the ignition delay time of a stoichiometric propane/air mixture by 75% at 875 K. Chemical kinetic modeling shows that H-atom abstraction reaction of the fuel molecule by NO2 plays a critical role in promoting ignition in conjunction with reactions between NO and less reactive radicals such as HO2 and CH3O2 at low and intermediate temperatures. Experimental results show that the presence of 10 mol% CO2 in the vitiated air reduces the peak laminar flame speed by up to a factor of two. Chemical kinetic effects of CO2 contribute to the reduction in flame speed by suppressing the formation of OH radicals in addition to the lower flame temperature caused by dilution. Overall, the detailed chemical kinetic mechanism developed in the current work predicts the chemical kinetic effects of vitiated species, namely NOx and CO2, on propane combustion reasonably well. Moreover, the reaction kinetic scheme also predicts the negative temperature coefficient (NTC) behavior of propane during low-temperature oxidation.  相似文献   

10.
The pyrolysis of n-decane was investigated in a flow reactor at 5, 30, 150 and 760 Torr, and the oxidation of n-decane at equivalence ratios of 0.7, 1.0 and 1.8 was studied in laminar premixed flames at 30 Torr. In both experiments, synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to identify combustion species and measure their mole fraction profiles. A new detailed kinetic model of n-decane with 234 species and 1452 reactions was developed for applications in intermediate and high temperature regions, and was validated against the experimental results in the present work. The model was also validated against previous experimental data on n-decane combustion, including species profiles in pyrolysis and oxidation in high pressure shock tube and atmospheric pressure flow reactor, jet stirred reactor oxidation, atmospheric pressure laminar premixed flame, counterflow diffusion flame and global combustion parameters such as laminar flame speeds and ignition delay times. In general, the performance of the present model in reproducing these experimental data is reasonably good. Sensitivity analysis and rate of production analysis were conducted to understand the decomposition processes of n-decane.  相似文献   

11.
The present work reports experimental investigations on laminar burning velocity variation of CH4+H2+air mixtures at elevated temperatures (300–650 K) using an externally heated diverging-channel method. The effect of mixture equivalence ratio (? = 0.7–1.3) and H2 fraction (0–50% by volume) on burning velocity have been reported at elevated temperatures. The experimental measurements are compared with numerical simulations using GRI Mech 3.0 and FFCM-1 kinetic models. The obtained results exhibit an increase in the laminar burning velocity with H2 fraction due to the formation of H-atom as an intermediate. The temperature dependency is established through a power-law correlation. The temperature-exponent shows a parabolic variation with a minimum value at ? = 1.1. Reaction pathway diagram interprets the major oxidation paths followed by reactants for higher carbon-consumption with varying H2 fraction. The P2 pathway involving ethane breakdown plays a major role in enhancing the burning velocity at rich mixture conditions.  相似文献   

12.
Numerical study on laminar burning velocity and NO formation of the premixed methane–hydrogen–air flames was conducted at room temperature and atmospheric pressure. The unstretched laminar burning velocity, adiabatic flame temperature, and radical mole fractions of H, OH and NO are obtained at various equivalence ratios and hydrogen fractions. The results show that the unstretched laminar burning velocity is increased with the increase of hydrogen fraction. Methane-dominated combustion is presented when hydrogen fraction is less than 40%, where laminar burning velocity is slightly increased with the increase of hydrogen addition. When hydrogen fraction is larger than 40%, laminar burning velocity is exponentially increased with the increase of hydrogen fraction. A strong correlation exists between burning velocity and maximum radical concentration of H + OH radicals in the reaction zone of premixed flames. High burning velocity corresponds to high radical concentration in the reaction zone. With the increase of hydrogen fraction, the overall activation energy of methane–hydrogen mixture is decreased, and the inner layer temperature and Zeldovich number are also decreased. All these factors contribute to the enhancement of combustion as hydrogen is added. The curve of NO versus equivalence ratio shows two peaks, where they occur at the stoichiometric mixture due to Zeldovich thermal-NO mechanism and at the rich mixture with equivalence ratio of 1.3 due to the Fenimore prompt-NO mechanism. In the stoichiometric flames, hydrogen addition has little influence on NO formation, while in rich flames, NO concentration is significantly decreased. Different NO formation responses to stretched and unstretched flames by hydrogen addition are discussed.  相似文献   

13.
The experimental study of the oxidation of two blend surrogates for diesel and biodiesel fuels, n-decane/n-hexadecane and n-decane/methyl palmitate (74/26 mol/mol), has been performed in a jet-stirred reactor over a wide range of temperatures covering both low, and high-temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (hydrocarbon inlet mole fraction of 0.002) and at stoichiometric conditions.Numerous reaction products have been identified and quantified. At low and intermediate temperatures (less than 1000 K), the formation of oxygenated species such as cyclic ethers, aldehydes and ketones has been observed for n-decane, n-hexadecane, and methyl palmitate. At higher temperature, the formation of these species was not observed any more, and small amounts of unsaturated species (olefins and unsaturated methyl esters) have been detected.Results obtained with methyl palmitate and n-hexadecane have been compared in order to highlight similarities and differences between large n-alkanes and methyl esters.  相似文献   

14.
2-Butanol (sC4H9OH) pyrolysis has been studied in a flow reactor with the synchrotron vacuum ultraviolet photoionization mass spectrometry combined with the molecular-beam sampling technique. The pyrolysis species were identified and their mole fractions were determined. Four pressures of 5, 30, 150 and 760 Torr were selected to study the pressure dependence of 2-butanol pyrolysis chemistry. The temperature- and pressure-dependent rate constants of unimolecular reactions of 2-butanol were calculated with the RRKM/Master Equation method. With the help of theoretical calculations, a detailed kinetic model consisting of 160 species and 1038 reactions was developed to simulate the 2-butanol pyrolysis. It is concluded that the mole fractions of pyrolysis species are very sensitive to the 2-butanol unimolecular reaction rates. To enhance the accuracy, the model is further validated by the species profiles in shock tube pyrolysis, a rich laminar premixed flame, oxidation data from jet-stirred reactor, ignition delay times, and laminar flame speed. Good agreements between the predicted and measured results were obtained.  相似文献   

15.
The experimental study of the oxidation of a blend containing n-decane and a large unsaturated ester, methyl oleate, was performed in a jet-stirred reactor over a wide range of temperature covering both low and high temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (n-decane and methyl oleate inlet mole fractions of 1.48 × 10−3 and 5.2 × 10−4) and under stoichiometric conditions.The formation of numerous reaction products was observed. At low and intermediate temperatures, the oxidation of the blend led to the formation of species containing oxygen atoms like cyclic ethers, aldehydes and ketones deriving from n-decane and methyl oleate. At higher temperature, these species were not formed anymore and the presence of unsaturated species was observed. Because of the presence of the double bond in the middle of the alkyl chain of methyl oleate, the formation of some specific products was observed. These species are dienes and esters with two double bonds produced from the decomposition paths of methyl oleate and some species obtained from the addition of H-atoms, OH and HO2 radicals to the double bond.Experimental results were compared with former results of the oxidation of a blend of n-decane and methyl palmitate performed under similar conditions. This comparison allowed highlighting the similarities and the differences in the reactivity and in the distribution of the reaction products for the oxidation of large saturated and unsaturated esters.  相似文献   

16.
Hydrogen (H2) is an effective additive to improve the issue of low laminar burning velocity of some biofuels. In order to better understand the laminar burning characteristics of ethyl acetate (EA) with or without H2 addition, experimental investigations of laminar burning characteristics were carried out by using the high-speed Schlieren photography technique in a constant volume combustion chamber. Tests were conducted under various equivalence ratios ranging from 0.5 to 1.4 with an initial temperature of 358 K, an initial pressure of 0.1 MPa and a H2/air proportion of 0%, 4%, 8% and 12% by volume. Laminar burning velocities, together with other parameters such as laminar burning flux, flame thickness, Markstein length and Markstein number, were calculated and discussed. In addition, the experimental data were compared with numerical simulations based on the Dayma model. Results showed that the laminar burning velocity of EA was enhanced with the increase of H2 addition, and the maximum value reached 95.09 cm/s at φ = 0.6 with 12% H2, a value more than twice as fast as that of pure EA (39.3 cm/s). Moreover, H2 was found to extend the lower flammability limit of EA. The laminar burning velocities simulated with the Dayma model agreed well with the experimental results of EA at various H2 additions.  相似文献   

17.
18.
This paper presents the development and analysis of a new airlift-driven raceway reactor configuration for energy-efficient algal cultivation. A theoretical analysis of the energy requirements for traditional paddlewheel-driven raceway reactors and the proposed airlift-driven raceway reactors is presented. A hydrodynamic model was developed to predict the liquid circulation velocity in the reactor system based on theoretical energy balance. The predicted liquid velocity agreed well with experimentally measured liquid velocity with r2 = 0.89. Based on the results of this analysis, the energy required for maintaining typical raceway velocity of 14 cm/s for mixing and keeping the cultures in suspension in a paddlewheel-driven raceway could be reduced by as much as 80% with the proposed configuration. Growth of Scenedesmus sp. was evaluated in a laboratory scale, 20 L version of the proposed reactor configuration using artificial lighting under ambient temperatures without any supplementary carbon dioxide sparging. The volumetric algal biomass productivity achieved in the proposed configuration (0.16 ± 0.03 dry g/L day) is comparable or better than that reported in the literature for paddlewheel-driven raceways.  相似文献   

19.
Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810 ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3 + N2 → O + O2 + N2 and O3 + H → O2 + OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition.  相似文献   

20.
《Combustion and Flame》2014,161(2):384-397
Low-temperature combustion (LTC) receives increasing attention because of its potential to reduce NOx and soot emissions. For the application of this strategy in practical systems such as internal combustion engines and gas turbines, the fundamental chemical reactions involved must be understood in detail. To this end, reliable experimental data are needed including quantitative speciation to assist further development of reaction mechanisms and their reduction for practical applications.The present study focuses on the investigation of low-temperature oxidation of ethanol and dimethyl ether (DME) under identical conditions in an atmospheric-pressure laminar flow reactor. The gas composition was analyzed by time-of-flight (TOF) mass spectrometry. This technique allows detection of all species simultaneously within the investigated temperature regime. Three different equivalence ratios of ϕ = 0.8, 1.0, and 1.2 were studied in a wide, highly-resolved temperature range from 400 to 1200 K, and quantitative species mole fraction profiles have been determined.The experiments were accompanied by numerical simulations. Their results clearly show the expected different low-temperature oxidation behavior of both fuels, with a distinct negative temperature coefficient (NTC) region only observable for DME. With detailed species information including intermediates, differences of the kinetics for both fuels are discussed. Small modifications of the mechanisms served to identify sensitivities in the model. The experimental results may assist in the improvement of kinetic schemes and their reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号