首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以纳米SiC粉为惰性填料,采用先驱体浸渍裂解法制备C/C-SiC复合材料,研究了不同密度C/C坯体对复合材料烧蚀性能的影响。结果表明,不同密度C/C坯体对制得的复合材料性能有很大的影响,其中C/C预制体密度为1.24g/cm~3试样制得的复合材料性能最优,其最终密度为1.80g/cm~3,开孔率为7.32%,线烧蚀率和质量烧蚀率分别为0.0040mm/s和0.0012g/s。  相似文献   

2.
往C/C复合材料中加入超高温陶瓷,以满足其在高温有氧环境中的应用。采用高固相含量浆料浸渍结合前驱体浸渍裂解工艺制备C/C-ZrB_2-SiC复合材料,研究ZrB_2浆料的分散性和流变行为,以及C/C-ZrB_2-SiC复合材料的显微组织、力学性能和烧蚀性能。结果表明:硼化锆浆料在分散剂聚乙烯胺含量为0.40 wt.%、p H值为5的条件下具有良好的分散性和较低的黏度。陶瓷相均匀地分布在C/C复合材料的网胎层和针刺区;C/C-ZrB_2-SiC复合材料的抗弯强度为309.30MPa,其在2500°C氧乙炔火焰烧蚀条件下显示出优异的烧蚀性能,质量烧蚀率和线烧蚀率分别为0.40 mg/s和0.91μm/s。此外,在烧蚀过程中,复合材料表面形成连续、致密的二氧化锆层,能有效地降低氧气向材料内部的扩散速率,对复合材料形成良好的保护。  相似文献   

3.
张天助  陈招科  熊翔 《稀有金属快报》2013,(11):659-664,675
为提高C/C复合材料的抗烧蚀性能,采用两步刷涂一烧结法制备了ZrB2-SiC基陶瓷涂层。首先利用反应烧结制备ZrB2-SiC—ZrC过渡层,并在此基础上制备了ZrB2-20%SiC-5%Si3N4、ZrB2.15%SIC-20%MoSi2、ZrB2.15%SiC-20%TaC3种外涂层。利用XRD和扫描电镜研究了涂层的相组成和显微形貌,并采用氧乙炔焰烧蚀仪测试了涂层在2500℃、60S的抗烧蚀性能,探讨了涂层的高温烧蚀机理。结果表明:利用反应烧结制备的过渡层与基体结合紧密,且与外涂层无明显分层现象,起到了良好的过渡作用;由于Si,N4及MoSi2起到了烧结助剂作用,使ZrB2—20%SiC-5%Si,N4、ZrB2.15%SiC.20%MoSi2外涂层结构较为致密;ZrB2—20%SiC-5%si3N4、ZrB2—15%SiC~20%MoSi2涂层表现出了较好的抗烧蚀性能,其中ZrB2-20%SiC-5%Si3N4涂层线烧蚀率及质量烧蚀率分别为0.075mm/s、0.0081/s,ZrB2—15%SIC-20%MoSi2涂层线烧蚀率及质量烧蚀率分别为0.018mm/s、0.0064g/s,而ZrB2-15%SIC-20%TaC涂层由于结构较为松散,未能起到有效的氧化防护,导致涂层被烧穿。  相似文献   

4.
采用料浆浸渍结合树脂浸渍裂解法制备了含9.73 wt.% LaB6的LaB6-C/C预制体,再利用反应熔体浸渍法(RMI)制备了LaB6改性C/C-ZrC-SiC复合材料,考察了材料的微观结构和烧蚀行为,探究LaB6对材料抗烧蚀性能的作用机理。结果表明:在热流密度为2380 kw/m2的氧乙炔焰烧蚀120 s后,LaB6改性C/C-ZrC-SiC复合材料的质量烧蚀率和线烧蚀率分别为1.05×10-3 g/s和2.17×10-3 mm/s,较未改性C/C-ZrC-SiC复合材料分别降低了74.8 %和61.9 %。烧蚀过程中,LaB6发生氧化反应生成La2O3和B2O3,La2O3与ZrO2之间的固溶作用以及化学反应,再加之液态B2O3具有促进固相反应传质的作用,使得材料表面形成大面积连续稳定的ZrO2-La2Zr2O7-La0.1Zr0.9O1.95熔融态保护层,这是材料优异抗烧蚀性能的主要原因。  相似文献   

5.
以天然气为前驱气体,整体碳毡和2D针刺碳毡为预制体,采用热悌度化学气相渗积技术制备了两种C/C复合材料,其表观密度均为1.74g/cm^3。借助光学显微镜和扫描电子显微镜观察了热解碳基体的生长特征和微观形貌,采用热膨胀仪测量了两种材料的热膨胀系数(CTE),研究了由不同预制体增强C/C复合材料的CTE,解释了造成材料不同方向CTE差异的主要原因。结果表明,随着温度升高,材料A和B的CTE是逐渐升高的,且Z向CTE值均大于XY向。当两种材料在Z向的纤维体积分数接近时,随着XY方向纤维体积分数增大,材料在Z向的CTE增大,在XY向的CTE降低,两种材料存XY和Z向的CTE旱如下分布:αB—z〉dAz〉αA—xy〉αBxY-C/C复合材料的CTE主要取决于纤维体积分数和排市、碳基体及材料中的孔隙分布情况,前者起决定作用。  相似文献   

6.
合成了全氢聚硅氮烷和硼氮烷的混杂先驱体并对其结构进行了表征;以混杂先驱体和3D碳纤维编制体为原料,采用先驱体浸渍-裂解(PIP)工艺制得了碳纤维增强氮化硼.氮化硅混杂基体的复合材料,并对复合材料的力学性能和抗烧蚀性能进行了研究。结果表明,混杂先驱体中含有B—N,B—H,Si—N,Si—H,N—H等结构,无其它杂质出现;随着PIP工艺循环次数的增加,复合材料的密度随之提高:当进行4个循环时基本致密,密度达到1.50g/cm^3,弯曲强度达到156.4MPa;轨道模拟实验显示复合材料具有优异的抗烧蚀性能。  相似文献   

7.
利用等离子体火炬为高温热源,研究了混杂C/C复合材料的烧蚀性能。结果表明:随着烧蚀区域从火焰中心到边缘的变化,材料的烧蚀特性从中心区域的以热力学烧蚀为主向靠近边缘区域的以热化学烧蚀为主过渡;碳基体和碳纤维的抗热力学烧蚀性能相当,而碳纤维的抗热化学烧蚀特性则明显优于碳基体。  相似文献   

8.
C/C坯体对RMI C/C—SiC复合材料组织的影响   总被引:4,自引:2,他引:4  
以PAN基炭纤维(Cf)针刺整体毡为预制体,用化学气相渗透(CVI)、浸渍炭化(IC)方法制备了不同炭纤维增强炭基体的多孔C/C坯体,采用反应熔渗(RMI)法制备C/C—SiC复合材料,研究了渗Si前后坯体的密度和组织结构。结果表明:不同C/C坯体反应溶渗硅后复合材料的物相组成为SiC相、C相及单质Si相;密度低的坯体熔融渗硅后密度增加较多;密度的增加与开口孔隙度并不是单调增加的关系,IC处理的坯体开口孔隙度低,但渗硅后复合材料的密度增加较多;IC坯体中分布分散的树脂C易与熔渗Si反应,CVI坯体中的热解C仅表层与熔渗Si反应,在Cf和SiC之间有热解C存在;坯体密度相同时,IC处理的坯体中SiC量较多,单质Si相含量少且分散较好,而CVI坯体中SiC量较少,单质Si相的量较多;制备方法相同时,高密度的C/C坯体,渗硅后C相较多。  相似文献   

9.
采用高温反应熔渗工艺制备了ZrB2-SiC和La2O3改性ZrB2-SiC涂层C/C复合材料,对比了2种涂层试样在中温(7001100℃)、高温(12001500℃)和超高温(2000℃以上)3个温域范围内的抗氧化性能。结果表明:7001100℃范围内,随着温度的升高,La2O3改性涂层试样的抗氧化性能提升幅度在逐渐提高。1200℃1500℃范围内,涂层均表现出良好的长时抗氧化性能,La2O3改性ZrB2-SiC在1200℃下恒温氧化250 h后,仍保持微量的增重;涂层复合材料良好的高温抗氧化性能主要其在是由于氧化过程中涂层表面形成的La-Si-O复合玻璃层和钉扎相ZrSiO4的协同作用提升了氧化膜的高温稳定性。在2000℃以上的氧乙炔火焰烧蚀环境下,La2O3的添加使得ZrB2-SiC涂层的质量烧蚀率和线烧蚀率均降低了近50%,其主要归因于表层La-Si-O和ZrO2玻璃层对烧蚀缺陷的愈合作用。  相似文献   

10.
采用化学气相反应法在C/C复合材料表面制备抗氧化SiC涂层,借助X射线衍射仪、扫描电镜及能谱等分析手段,研究涂层的结构;通过氧乙炔焰烧蚀试验考察SiC涂层对C/C复合材料高温耐烧蚀性能影响。结果表明:SiC涂层可明显提高C/C复合材料的高温短时耐烧蚀性能,经过20 s的高温氧乙炔焰烧蚀后,C/C复合材料试样的线烧蚀率和质量烧蚀率分别为13μm/s和6.6 mg/s,SiC涂层试样的线烧蚀率和质量烧蚀率分别为22μm/s和0.5 mg/s;在烧蚀中心区,涂层试样的烧蚀以升华分解为主,同时还伴有氧化烧蚀和微区机械剥蚀;在烧蚀过渡区,涂层的烧蚀机制以热氧化和燃气冲刷为主;而在烧蚀边缘区,涂层的烧蚀则主要表现为弱氧化烧蚀。  相似文献   

11.
C/C-SiC-HfC composites were fabricated via precursor infiltration and pyrolysis using a mixture solution of organic hafnium-containing polymer and polycarbosilane as precursor. The microstructures and the phases of the composites were analyzed by scanning electron microscopy and X-ray diffraction. The ablation resistance of the composites was evaluated under 3,000°C oxyacetylene torch. After ablation for 120s, the composites exhibit good ablation properties with the linear and mass ablation rates of 9.1×10-4mm/s and 1.30×10-3g/s, which are far lower than those of the C/C-SiC composites. The excellent ablative property of the C/C-SiC-HfC composites is resulted from the formation of HfO2 molten layer on the surface of the composites, which could play a positive role in reducing heat transfer and preventing oxygen transport to the underlying carbon substrate.  相似文献   

12.
结合预制件一次性模压成型和真空气压浸渗技术制备具有双层结构的高体积分数(60%~65%)、可激光焊接Sip-SiCp/Al混杂复合材料。该复合材料的组织结构均匀、致密,增强相颗粒均匀地分布在复合材料中,Sip/Al-SiCp/Al界面均匀、连续、结合紧密。性能测试表明,Sip-SiCp/Al混杂复合材料具有密度低(2.96 g/cm3)、热导率高(194 W/(mK))、热膨胀系数小(7.0×10-6K-1)、气密性好(1.0×10-3(Pacm3)/s)等优异特性。焊接试验表明,Sip-SiCp/Al混杂复合材料具有良好的激光焊接特性,其焊缝平整、致密,微观组织均匀,没有生成明显的气孔和脆性相Al4C3。同时,Sip-SiCp/Al混杂复合材料激光封焊后优异的气密性(4.8×10-2(Pacm3)/s)能够满足现代电子封装行业对气密性的严格要求。  相似文献   

13.
In order to improve the ablation resistance of C/C composites, ZrB2-based coating was prepared by supersonic atmosphere plasma spraying for SiC-coated C/C composites. The phase composition, microstructure, and anti-ablation property of the coating were investigated. Results show that the supersonic atmosphere plasma spraying is an effective method to prepare a dense ZrB2-based coating. The coating largely improves the ablation resistance of C/C composites. The linear ablation rate is 0.17 μm/s after ablation for 60 s in oxyacetylene torch. In ablation center, the ablation performance is determined by complicated mechanical denudation and chemical erosion. The formation of ZrO2 during ablation can partly prevent the diffusion of oxygen, which contributes to the good ablation resistance of ZrB2-based coating. In transition zone, the generation of SiO2 prevents inner coating from ablation and the chemical erosion becomes the leading mechanism.  相似文献   

14.
为进一步提高C/C复合材料在不同烧蚀环境下的烧蚀性能,采用浆料刷涂法在C/C-SiC-ZrC陶瓷基复合材料上制备Zr含量分别为34%和60%(质量分数)的ZrC-SiC-MoSi2涂层,并且利用氧乙炔焰研究涂层C/C-SiC-ZrC复合材料在3种不同氧气及乙炔流量下的烧蚀行为。结果表明:随着Zr含量的增加,涂层内部的ZrC和SiC颗粒尺寸明显减小,且颗粒分布更加均匀。Zr含量为60%的涂层线烧蚀率随氧气和乙炔流量的增加而增加,而Zr含量为34%的涂层线烧蚀率随氧气和乙炔流量的增加,先增加后降低。此外,详细讨论ZrC-SiC-MoSi2涂层在不同条件下的烧蚀机理。随着氧气和乙炔流量的增加,主要的烧蚀机制由氧化变为氧化和蒸发的结合作用,最后变为氧化、蒸发及剥蚀的结合作用。  相似文献   

15.
通过真空浸渗和反应熔渗在C/C复合材料上制备了具有微米-亚微米增强结构的ZrB2-ZrC-SiC涂层。微米-亚微米增强结构由微米级的碳化硅为骨架,亚微米级的超高温陶瓷颗粒(UHTCs)为填充料组成。采用等离子火焰对复合材料进行了烧蚀试验。结果表明,在烧蚀过程中由聚集的碳化硅颗粒和超高温陶瓷颗粒组成的微米-亚微米增强结构在烧蚀气流的侵蚀下易于形成较大的缺陷。已形成的较大缺陷容易与缺陷周围的裂纹相连形成较大的凹坑,从而导致部分涂层脱落,并导致整个涂层系统失效。  相似文献   

16.
C/C复合材料在高温燃气高速冲刷环境中的严重氧化烧蚀限制了其在航空航天等领域的广泛应用,采用抗烧蚀涂层技术是目前提高该材料高温抗烧蚀性能的有效方法。综述了近年来国内外C/C复合材料高温抗烧蚀涂层在玻璃涂层、金属涂层、陶瓷涂层等体系方面的研究进展,总结并评价了C/C复合材料抗烧蚀涂层的抗烧蚀性能测试技术及其研究成果,提出了C/C复合材料高温抗烧蚀涂层在未来研究中潜在的重点发展方向。  相似文献   

17.
C/C-Cu复合材料的烧蚀性能及烧蚀机理   总被引:3,自引:1,他引:2  
采用真空熔渗技术制备新型C/C-Cu复合材料。采用氧-乙炔焰测试不同时间下C/C-Cu复合材料的抗烧蚀性能,利用XRD、SEM分析材料烧蚀后的物相组成及组织形貌,对C/C-Cu复合材料的烧蚀机理进行研究。结果表明:烧蚀时间对材料的烧蚀率有显著影响,随着时间的延长,材料的质量烧蚀率和线烧蚀率均呈上升趋势;烧蚀后复合材料表面生成氧化物相TiO2和Cu2O,原来的TiC相被TiO2相替代;C/C-Cu复合材料的烧蚀性能优于C/C复合材料的烧蚀性能;C/C-Cu复合材料的氧-乙炔焰烧蚀机制为热氧化烧蚀、热物理烧蚀(升华)和机械冲刷的综合作用。  相似文献   

18.
采用分步碳包覆法合成LiFePO4/C复合材料。首先,将原料Fe2O3、NH4H2PO4和葡萄糖经过固相反应合成Fe2P2O7/C复合材料,再将Fe2P2O7/C与前驱体Li2CO3、葡萄糖混合,通过二次碳包覆工艺合成LiFePO4/C复合材料,并考察合成温度对LiFePO4/C复合材料电化学性能的影响。采用X射线衍射、扫描电镜、差热-热重分析、电化学阻抗谱(EIS)和充放电测试对材料的性能进行表征。结果表明:以制取的Fe2P2O7/C为前驱体合成的LiFePO4/C复合材料具有较好的物理和电化学性能,材料的振实密度达1.26 g/m3,0.1C放电容量为158.3 mA.h/g,1C初次放电比容量达到140 mA.h/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号