首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
一种带辅助电路的全桥移相ZVS变换器拓扑的设计   总被引:1,自引:0,他引:1       下载免费PDF全文
宋云庆  徐申  吴建辉   《电子器件》2008,31(2):619-622
许多结构诸如添加饱和电感、在滞后臂并联由电感和开关管组成的辅助电路、副边采用倍流整流电路等被用来拓宽传统全桥ZVS拓扑实现零电压开关的负载范围,减小占空比的丢失,但这些方法往往成本高,设计难度大.我们以低成本,设计简单同时又能满足系统性能为出发点给出了一种带简单的LC辅助谐振电路的变换器拓扑.论文阐述了该变换器的基本工作原理,分析了占空比的丢失和实现ZVS的范围.在设计中通过折中考虑各个元件参数使得系统获得最佳性能,并给出了一个1.2 kW变换器的设计实例来说明如何找到系统的最佳参数.  相似文献   

2.
戴慧 《通信电源技术》2011,28(4):15-17,87
文章研究了一种采用无源辅助电路的零电压开关移相全桥变换器,它是在传统全桥拓扑上加入了由电容和电感组成的无源辅助电路,从而可以在整个输入电压和全负载范围内实现原边所有开关管的零电压开关。文中详细分析了该变换器的工作原理及其特性,并对辅助电路参数进行了设计。在此基础上,设计完成了一台1.2kW(50V/24A),开关频率为100kHz的样机,实验结果验证了该变换器的优越性。  相似文献   

3.
王少华  何志伟  蔡毅 《电子设计应用》2004,(11):113-114,117
本文提出了一种副边带有源嵌位电路的PWM全桥变换器,实现了超前桥臂的零电压开通和关断.滞后桥臂的零电流开通和关断,减少了占空比损失,并且克服了全桥变化器在环流过程中存在的环流损耗。应用本拓扑制作了一台功率1.2KW频率100KHz的样机。  相似文献   

4.
在谐振极软开关逆变器辅助电路的换流过程中,为避免剩磁通的累积导致变压器铁心饱和,提出了一种变压器辅助换流的三相节能型谐振极逆变器的拓扑结构,在二极管反向阻断的作用下,变压器的磁化电流无法形成稳态环流,从而使变压器中的能量全部向负载转移,磁化电流最终变化到零,实现了变压器的去磁复位.此外,逆变器的主开关和辅助开关可以分别完成零电压软切换和零电流软切换.分析了电路的换流过程.实验结果表明逆变器的开关器件完成了软切换,变压器磁化电流能减小到零.该拓扑结构对于研发高性能谐振极逆变器具有一定的参考价值.  相似文献   

5.
通过在多电平变换技术和功率因数校正技术两者之间寻找一个应用的契合点,给出了一种零电压开关三电平单级功率因数校正电路拓扑的设计方法。该方法中的变换器由boost功率因数调节器和三电平谐振变换器组成。其中变换器控制方式由两个控制环路实现,输出电压通过控制直流变换器开关频率来进行调节;直流母线电压则通过控制boost调节器的占空比来调节。仿真分析表明,运用该拓扑的变换器的功率因数较高;并可在宽负载变化情况下提供可调节的输出电压以及一个稳定的直流母线电压。  相似文献   

6.
电流模式控制移相全桥零电压软开关(ZVS)DC/DC功率变换器   总被引:1,自引:0,他引:1  
本文介绍一种新型的高频DC/DC开关功率变换器,它采用电流模式移相PWM控制,在较大的负载范围内实现了开关器件的零电压软开关(ZVS),并给出了仿真主电路和主要波形。  相似文献   

7.
为了改善逆变器的性能,提出了一种辅助电路与主开关并联的单相全桥节能逆变器.逆变器采用受限单极式正弦脉宽调制(Sinusoidal Pulse Width Modulation,SPWM)方法,在每个开关周期,只需要控制1个主开关和1个辅助开关的切换,辅助开关可以采用固定占空比控制,而且不需要设定谐振电流阈值来控制辅助开关.在每个开关周期的换流过程中,需要切换的主开关所并联的谐振电容的电压能变化到零,主开关能实现零电压软开通.辅助电路中无器件直接串联在直流母线上,可有效降低辅助电路通态损耗.分析了电路工作原理,实验结果表明主开关和辅助开关都实现了软切换.因此该拓扑能有效降低开关损耗和提高逆变器效率.  相似文献   

8.
户毅仁  石勇  徐卓异  黄潮金 《电子器件》2021,44(5):1134-1140
提出一种新型零电压零电流(ZVZCS)飞跨电容型不对称PWM半桥三电平变换器,该变换器原边开关器件的电压应力为输入电压的一半;所有开关器件在较宽负载范围内实现软开关,其中超前管实现ZVS开通,ZCS关断;滞后管实现ZCS开通,ZVS关断,从而降低开关损耗;副边采用容性整流,在续流阶段将原边电流降至0,使得开关器件的电流分布更加均衡并减小飞跨电容的电流应力;与此同时,消除二极管反向恢复损耗。文中讨论了电路的结构、工作原理和基础特性,为证明理论正确性,搭建一台500W实验样机来验证。  相似文献   

9.
王强  徐有万  王天施  刘晓琴 《电子学报》2019,47(7):1596-1600
作为中小功率发电系统重要环节的三相逆变器的开关频率增大时,开关损耗也显著增大,不利于节能。为实现中小功率三相逆变器的高频化和节能化,提出了一种三相零电压开关谐振极逆变器拓扑结构.当桥臂上的辅助谐振电路处于工作状态时,开关器件并联的电容的电压能周期性变化到零,使开关器件完成零电压软切换,这有利于高频金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)作为逆变器的开关器件.分析了电路的工作流程,实验结果表明开关器件处于零电压软切换.因此,该拓扑结构对于研发高性能的中小功率三相逆变器具有参考价值.  相似文献   

10.
本文提出了一种三相交流谐振环节软开关逆变器的电路拓扑及其控制方法。该拓扑采用正负斜率交替的锯齿载波.使所有功率开关器件的计通集中征锯齿载波的垂直沿处,在此时启动辅助谐振电路,完成功率开关器件的切换。分析软开关动作模式.并对各模式的过渡过程进行数学解析。对系统进行了仿真,仿真结果表明采用该控制方法能实现逆变器功率开关器件的零电压软开关动作。  相似文献   

11.
A new family of full-bridge ZVS converters   总被引:1,自引:0,他引:1  
A family of soft-switched, full-bridge (FB) pulse-width-modulated (PWM) converters that feature zero-voltage-switching (ZVS) of all bridge switches over a wide range of input voltage and output load with minimal duty cycle loss and circulating current is described. The ZVS of primary switches is achieved by employing two magnetic components whose volt-second products change in the opposite directions with a change of phase shift between the two bridge legs. One magnetic component is a transformer while the other magnetic component is either a coupled inductor or a single-winding inductor. The transformer is used to provide isolated output(s), whereas the inductor is used to store energy for ZVS.  相似文献   

12.
A novel zero-voltage and zero-current-switching (ZVZCS) full-bridge (FB) pulse-width modulated (PWM) converter is proposed. The new converter overcomes the limitations of the zero-voltage-switching (ZVS)-FB-PWM converter, such as high circulating energy, loss of duty cycle, and limited ZVS load range for the lagging-leg switches. By using the DC blocking capacitor and adding a saturable inductor, the primary current during the freewheeling period is reduced to zero, allowing the lagging-leg switches to be operated with zero-current-switching (ZCS). Meanwhile, the leading-leg switches are still operated with ZVS. The new converter is attractive for high-voltage (400-800 V), high-power (2-10 kW) applications where IGBTs are predominantly used as the power switches. The principle of operation, features, and design considerations of the new converter are described and verified on a 2-kW, 100-kHz, IGBT-based experimental circuit  相似文献   

13.
This paper presents a new topology named zero-voltage switching (ZVS) resonant reset dual switch forward dc-dc converter, which, compared with resonant reset single switch forward dc-dc converter, maintains the advantage that duty cycle can be more than 50%, at the same time disadvantages of high voltage stress for main switches and low efficiency are overcome. In addition, ZVS is achieved for all switches of the presented topology. Therefore, this proposed topology is very attractive for high voltage input, wide range, and high efficiency applications. In this paper, the operation principle and characteristic of this topology are analyzed in detail. Next, the design consideration is presented. Finally, the advantages mentioned above are verified by experimental results  相似文献   

14.
An accurately regulated multiple-output zero-voltage switching (ZVS) DC-DC converter is proposed. The converter is composed of three outputs altogether. The first and second outputs are regulated through the duty cycle control of two asymmetrical half bridge converters, while the third output is regulated through the phase shift of the two asymmetrical half bridge converters. The characteristic of this multiple-output dc-dc converter is analyzed and design process is investigated. ZVS is realized for all the main switches. Therefore this multiple-output dc-dc converter can operate with higher efficiency at higher switching frequency. The operation stages, ZVS condition and control detail are also presented. A 400 V input, 48 V/10 A, 5 V/20 A, 12 V/5 A outputs prototype is built to verify the design. The efficiency at rated input voltage full load is 93.36%.  相似文献   

15.
A new pulsewidth modulation (PWM)-controlled quasi-resonant converter for a high-efficiency plasma display panel (PDP) sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the primary resonant capacitor with a bidirectional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good zero-voltage switching (ZVS) capability, simple control circuits, no hign-voltage ringing problem of rectifier diodes, no dc offset of the magnetizing current and low-voltage stresses of power switches. Thus, the proposed converter shows higher efficiency than that of a half-bridge LLC resonant converter under light load condition. Although it shows the lower efficiency at heavy load, because of the increased power loss in auxiliary circuit, it still shows the high efficiency around 94%. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.   相似文献   

16.
《Electronics letters》2008,44(17):1029-1030
A novel zero voltage switching (ZVS) isolated converter is presented. The output voltage doubler is used on the output side to achieve the boost type of voltage conversion ratio. Active-clamping technique is adopted to realise the ZVS turn-on of all switches. The proposed circuit has no large output inductor such that the adopted circuit has a simpler structure, lower cost and no effective duty loss. Finally experimental results based on a 300 W prototype are provided to verify the effectiveness of the proposed converter.  相似文献   

17.
A zero-voltage and zero-current switching three-level DC/DC converter   总被引:6,自引:0,他引:6  
This paper presents a novel zero-voltage and zero-current switching (ZVZCS) three-level DC/DC converter. This converter overcomes the drawbacks presented by the conventional zero-voltage switching (ZVS) three-level converter, such as high circulating energy, severe parasitic ringing on the rectifier diodes, and limited ZVS load range for the inner switches. The converter presented in this paper uses a phase-shift control with a flying capacitor in the primary side to achieve ZVS for the outer switches. Additionally, the converter uses an auxiliary circuit to reset the primary current during the freewheeling stage to achieve zero-current switching (ZCS) for the inner switches. The principle of operation and the DC characteristics of the new converter are analyzed and verified on a 6 kW, 100 kHz experimental prototype.  相似文献   

18.
A new zero voltage switching (ZVS) boost converter is presented in this paper. By using an auxiliary switch and a capacitor, ZVS for all switches is achieved with an auxiliary winding in one magnetic core. A small diode is added to eliminate the voltage ringing across the main rectifier diode. This clamping technique can also be utilized in other dc-dc converters, and a family of new ZVS dc-dc converter is derived. A prototype (500 W/193 kHz) is made to verify the theoretical analysis. The efficiency is higher than 94% at 90-V input at full load  相似文献   

19.
A new soft-switched, current-driven full-bridge converter is presented. The structure utilizes a simple snubber formed by two unidirectional switches and a capacitor to realize soft-switching operation over a wide line and load range. All primary-side switches are operated with zero-current switching (ZCS) and the snubber switches are operated with zero-voltage switching. The energy used for soft-switching is self-adaptable. For a given input current, the snubber capacitor is charged to the minimum required energy for ZCS of the switches. Thus, less resonant energy is used and the conduction loss can be kept minimal. The cyclical switching operation and control of the converter will be discussed. By compromising the voltage stress on the switches and loss of duty cycle (i.e., the regulation range), an optimized design procedure of the circuit elements is derived. The input voltage range and load variation that ensure both output voltage regulation and soft switching are determined. By studying the small-signal characteristics of the entire system, a current-controlled feedback control circuit has been implemented with a DSP. The experimental results measured on a 5-kW, 530-V/15-kV prototype confirms the advantages of the proposed converter.   相似文献   

20.
In this paper, a CLL resonant tank fed by an asymmetrical pulsewidth-modulated (APWM) drive train is presented as an attractive option for low-power point-of-use power supplies used in telecom applications. This configuration can guarantee zero-voltage switching (ZVS) for an extended input voltage range of 35-75 V, while significantly reducing the associated conduction loss present in existing topologies. Proper resonant tank design will ensure efficient operation over the entire working range by maintaining ZVS for all line and load conditions, as well as minimizing the conduction loss by decreasing the circulating-current commensurate with load. Analysis of the converter topology is conducted, and a design procedure is presented. Experimental results from a 25-W 48-V/2.5-V proof-of-concept prototype are presented to validate the analysis and simulation results and to highlight the merits of the proposed topology. The proposed converter is shown to provide a 7%-14% efficiency improvement over a reference topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号