首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of ratio of alfalfa silage to alfalfa hay and forage particle size on nutrient intakes, site of digestion, rumen pools, and passage rate of ruminal contents were evaluated in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. The diets consisted of 60% barley-based concentrate and 40% forage made up either of 50:50 or 25:75 of alfalfa silage:alfalfa hay and alfalfa hay was either chopped or ground. Lactating dairy cows surgically fitted with ruminal and duodenal cannulas were used and offered ad libitum access to a total mixed ration. Intakes of nutrients were increased by increasing ratio of silage to hay but were not affected by particle size of forage. Change in ratio of silage to hay of diets did not affect site and extent of digestion. However, increased forage particle size of the diets improved digestibility of fiber and N in the total tract, and as well as digestibility of organic matter, starch, and acid detergent fiber in the intestine. There was a shift of starch digestion from the rumen to the intestine when forage particle size was increased, although total digestion of starch was not changed. Ruminal microbial protein synthesis and microbial efficiency also improved with increasing forage particle size. Cows fed ground hay versus chopped hay had significantly lower rumen wet mass regardless of the ratio of silage to hay. Reduced forage particle size also lowered ruminal nutrient pool size for cows fed the high silage diet. Ruminal passage rates of liquid and solid were decreased by reducing the ratio of silage to hay, and retention time of solids in the total tract was shortened by reducing forage particle size. These results indicate that manipulating ratio of silage to hay in the diets of dairy cows changed feed intake but had little effect on digestion. In contrast, increased forage particle size in dairy cow diets improved fiber digestion and microbial protein synthesis in the rumen, and shifted starch digestion from the rumen to the intestine. Dietary particle size, expressed as physically effective neutral detergent fiber, was a reliable indication of ruminal microbial protein synthesis and nutrient digestion.  相似文献   

2.
Three primiparous cows were assigned randomly to a 4 x 4 incomplete Latin square to evaluate ruminal characteristics (Experiment 1) with the following feeding strategies: strategy A, supplement (protein), forage plus high moisture ear corn (energy), protein; strategy B, energy plus protein, forage, energy plus protein; strategy C, forage plus energy, protein, forage plus energy, protein; and strategy D, forage, energy plus protein, forage, energy plus protein. In Experiment 2, 36 cows were fed diets similar to those in Experiment 1 from wk 4 through 19 postpartum. Cows fed diets according to strategy A had the highest and strategy D the lowest mean ruminal pH. Diurnal variation in ruminal pH was less with cows fed diets using strategies A and B than C and D. Other ruminal parameters were not significantly different. In Experiment 2, cows fed according to strategy B had higher DMI than those fed according to other strategies. Energy and protein fed together and separately from forage, regardless of sequence, increased milk fat percentage compared with protein fed separately. Milk production and protein yield tended to be highest when protein was fed separately, regardless of sequence to forage. Strategic feeding of protein and energy sources in relation to forage influenced some ruminal and production measurements in primiparous cows.  相似文献   

3.
A study was conducted to investigate the response to supplemental tallow of lactating cows fed basal diets with different alfalfa silage:corn silage ratios. We postulated that supplemental tallow will have decreasing negative effects on rumen fermentation, dry matter intake (DMI), and milk fat percentage as the dietary ratio of alfalfa silage:corn silage is increased. Eighteen Holstein cows averaging 134 +/- 14 d in milk were used in a replicated 6 x 6 Latin square design with 21-d periods. Treatments were arranged as a 2 x 3 factorial with 0 or 2% tallow (DM basis) and three forage treatments: 1) 50% of diet DM as corn silage, 2) 37.5% corn silage and 12.5% alfalfa silage, and 3) 25% corn silage and 25% alfalfa silage. Cows were allowed ad libitum consumption of a total mixed ration. Diets were formulated to contain 18% crude protein and 32% neutral detergent fiber. No fat x forage treatment interactions were observed. Fat supplemented cows had lower DMI and produced more milk with less milk fat content relative to non-supplemented cows. Concentration of trans-octadecenoic acids was higher in milk fat of tallow-supplemented cows. Tallow supplementation had no effect on ruminal pH and acetate:propionate ratio, but tended to decrease total volatile fatty acid (VFA) concentration in the rumen. Increasing the proportion of alfalfa silage increased DMI, milk fat percentage, and milk fat yield regardless of the fat content of the diet. Total VFA concentration and acetate:propionate ratio in the rumen were increased in response to higher levels of alfalfa in the diets. These results suggest that replacing corn silage with alfalfa silage did not alleviate the negative response of dairy cows to tallow supplementation at 2% of diet DM.  相似文献   

4.
We theorized that adding corn silage to a total mixed ration with alfalfa hay as the sole dietary forage would improve nutrient intake and chewing activity and thereby improve rumen fermentation and milk production. The objective of this research was to determine the effects of partial replacement of short alfalfa [physically effective (pe) neutral detergent fiber (NDF) >1.18 mm (peNDF>1.18) = 33.2%] with corn silage (CS, peNDF>1.18 = 51.9%) in yellow grease-supplemented total mixed rations on feed intake, chewing behavior, rumen fermentation, and lactation performance by dairy cows. Four multiparous (138 ± 3 d in milk) and 4 primiparous (115 ± 10 d in milk) Holstein cows were used in a 4 × 4 Latin square design experiment with four 21-d periods. Each period had 14 d of adaptation and 7 d of sampling, and parity was the square. Treatments were diets [dry matter (DM) basis] with 1) 40% alfalfa hay (ALF), 2) 24% alfalfa hay + 16% CS (CS40), 3) 20% alfalfa hay + 20% CS (CS50), and 4) 16% alfalfa hay + 24% CS (CS60). Diets had a forage-to-concentrate ratio of 40:60 on a DM basis. Cows had greater intake of DM and thus greater intakes of net energy for lactation, NDF, and peNDF when CS partially replaced alfalfa hay. Replacing alfalfa hay with CS increased daily eating and chewing times in all cows, and increased rumen pH at 4 h postfeeding in multiparous cows. Apparent total-tract digestibility coefficients for crude protein (CP) and NDF were not different among cows fed ALF, CS40, and CS50, but were lower for CS60 than for ALF. Energy-corrected milk yield was greater for CS40 and CS60 than for ALF. Milk protein yield was increased when CS replaced 40, 50, and 60% of alfalfa hay. Milk lactose was greater only for CS60, but milk lactose yield was greater for CS50 and CS60 than for ALF. Milk percentage and yield of fat did not differ among treatments. Therefore, CS partially replacing short alfalfa hay increased DM intake, consequently increased net energy for lactation and physically effective fiber intakes, and thus, improved milk and milk protein and lactose yields.  相似文献   

5.
A study was conducted to evaluate the effect of including alfalfa preserved either as silage or long-stem or chopped hay on DMI and milk fat production of dairy cows fed corn silage-based diets with supplemental tallow (T). Fifteen Holstein cows that averaged 117 DIM were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments (DM basis) were: 1) 50% corn silage:50% concentrate without T (CS); 2) 50% corn silage:50% concentrate with 2% T (CST); 3) 25% corn silage:25% short-cut alfalfa hay:50% concentrate with 2% T (SAHT); 4) 25% corn silage:25% long-cut alfalfa hay:50% concentrate with 2% T (LAHT); and 5) 25% corn silage:25% alfalfa silage:50% concentrate with 2% T (AST). Cows were allowed ad libitum consumption of a TMR fed 4 times daily. Diets averaged 16.4% CP and 30.3% NDF. Including 2% T in diets with corn silage as the sole forage source decreased DMI and milk fat percentage and yield. Replacing part of corn silage with alfalfa in diets with 2% T increased milk fat percentage and yield. The milk fat of cows fed CST was higher in trans-10 C18:1 than that of cows fed diets with alfalfa. No effect of alfalfa preservation method or hay particle length was observed on DMI and milk production. The milk fat percentage and yield were lower, and the proportion of trans-10 C18:1 in milk fat was higher for cows fed LAHT than for cows fed SAHT. Alfalfa preservation method had no effect on milk fat yield. Ruminal pH was higher for cows fed alfalfa in the diets, and it was higher for cows fed LAHT than SAHT. Feeding alfalfa silage or chopped hay appears to be more beneficial than long hay in sustaining milk fat production when 2% T is fed with diets high in corn silage. These results support the role of trans fatty acids in milk fat depression.  相似文献   

6.
《Journal of dairy science》2017,100(6):4475-4483
The objective of this study was to investigate the effects of 2 alfalfa hays differing in undigested neutral detergent fiber content and digestibility used as the main forage source in diets fed to high producing cows for Parmigiano-Reggiano cheese production. Diets were designed to have 2 different amounts of undigestible NDF [high (Hu) and low (Lu)], as determined by 240-h in vitro analysis (uNDF240). Alfalfa hay in vitro digestibility [% of amylase- and sodium sulfite-treated NDF with ash correction (aNDFom)] at 24 and 240 h was 40.2 and 31.2% and 53.6 and 45.7% for low- (LD) and high-digestibility (HD) hays, respectively. The 4 experimental diets (Hu-HD, Lu-HD, Hu-LD, and Lu-LD) contained 46.8, 36.8, 38.8, and 30.1% of alfalfa hay, respectively, 8.6% wheat straw, and 35.3% corn (50% flake and 50% meal; DM basis). Soy hulls and soybean meal were used to replace hay to balance protein and energy among diets. Eight multiparous Holstein cows (average milk production = 46.0 ± 5.2 kg/d, 101 ± 38 d in milk, and 662 ± 42 kg of average body weight) were assigned to a 4 × 4 Latin square design, with 2 wk of adaptation and a 1-wk collection period. Dry matter and water intake, rumination time, ruminal pH, and milk production and composition were measured. Diets and feces were analyzed for NDF on an organic matter basis (aNDFom), acid detergent fiber, acid detergent lignin, and uNDF240 to estimate total-tract fiber digestibility. Dry matter intake and rumination times were higher in HD diets compared with LD diets, regardless of forage amount. Rumination time was constant per unit of dry matter intake but differed when expressed as a function of uNDF240, aNDFom, or physically effective NDF intake. No differences were found among treatments on average ruminal pH, but the amount of time with pH <5.8 was lower in Hu-HD diets. Milk production and components were not different among diets. Total-tract aNDFom and potentially digestible neutral detergent fiber fraction digestibility was higher for the LD diets (88.3 versus 85.8% aNDFom in HD), for which lower feed intakes were also observed. The Hu-HD diet allowed greater dry matter intake, longer rumination time, and higher ruminal pH, suggesting that the limiting factor for dry matter intake is neutral detergent fiber digestibility and its relative rumen retention time.  相似文献   

7.
《Journal of dairy science》2019,102(12):10903-10915
This study evaluated the effects of feeding diets that were formulated to contain similar proportions of undigested neutral detergent fiber (uNDF) from forage, with wheat straw (WS) substituted for corn silage (CS), alfalfa hay (AH), or both. The diets were fed to lactating dairy cows and intake, digestibility, blood metabolites, and milk production were examined. Thirty-two multiparous Holstein cows (body weight = 642 ± 50 kg; days in milk = 78 ± 11 d; milk production = 56 ± 6 kg/d; mean ± standard deviation) were used in a randomized block design with 6-wk periods after a 10-d covariate period. Each period consisted of 14 d of adaptation followed by 28 d of data collection. The control diet contained CS and AH as forage sources (CSAH) with 17% of dietary dry matter as uNDF after 30 h of incubation (uNDF30). Wheat straw was substituted for AH (WSCS), CS (WSAH), or both (WSCSAH) on an uNDF30 basis, and beet pulp was used to obtain similar concentrations of NDF digestibility after 30 h of incubation (NDFD30 = 44.5% of NDF) across all diets. The 4 diets also contained similar concentrations of net energy for lactation and metabolizable protein. Dry matter intake was greatest for WSCS (27.8 kg/d), followed by CSAH (25.7 kg/d), WSCSAH (25.2 kg/d), and WSAH (24.2 kg/d). However, yields of milk, 3.5% fat-corrected milk (FCM), and energy-corrected milk did not differ, resulting in higher FCM efficiency (kg of FCM yield/kg of dry matter intake) for WSAH (1.83) and WSCSAH (1.79), followed by CSAH (1.69) and WSCS (1.64). Milk protein percentage was greater for CSAH (2.84%) and WSCS (2.83%) than for WSAH (2.78%), and WSCSAH (2.81%) was intermediate. The opposite trend was observed for milk urea nitrogen, which was lower for CSAH (15.8 mg/dL), WSCS (15.8 mg/dL), and WSCSAH (17.0 mg/dL) than for WSAH (20 mg/dL). Total-tract NDF digestibility and ruminal pH were greater for diets containing WS than the diet without WS (CSAH), but digestibility of other nutrients was not affected by dietary treatments. Cows fed WSAH had less body reserves (body weight change = −13.5 kg/period) than the cows fed the other diets, whereas energy balance was greatest for those fed WSCS. The results showed that feeding high-producing dairy cows diets containing different forage sources but formulated to supply similar concentrations of uNDF30 while maintaining NDFD30, net energy for lactation, and metabolizable protein constant did not influence milk production. However, a combination of WS and CS (WSCS diet) compared with a diet with CS and AH improved feed intake, ruminal pH, total-tract NDF digestibility, and energy balance of dairy cows.  相似文献   

8.
Effects of forage particle size and sodium bicarbonate on milk production, ruminal fermentation, ruminal fluid dilution rate, dry matter passage from the rumen, and nutrient digestion were measured in four Holstein cows in a 4 X 4 Latin-square experiment. Cows were fed ad libitum amounts of a diet of approximately 46% concentrate and 54% alfalfa hay. The 2 X 2 factorial arrangement of treatments were: 1) long stem alfalfa hay, 2) long stem alfalfa hay + 1.4% sodium bicarbonate (3.0% of concentrate), 3) chopped alfalfa hay (1.3 cm), and 4) chopped alfalfa hay + 1.4% sodium bicarbonate. Feed intake, milk yield, and milk composition were similar among treatments. Ruminal pH and concentration and molar percentages of volatile fatty acids were not altered. Decreasing feed particle size reduced ruminal fluid outflow as estimated by polyethylene glycol and chromium ethylenediamine tetraacetic acid dilution rates. Digestion of nutrients was decreased with chopped alfalfa hay but was not related to faster rate of passage of smaller size feed particles as determined by rare earth markers. Sodium bicarbonate increased water intake and tended to improve nutrient digestion. Absence of a significant effect of sodium bicarbonate upon rate of passage of chopped hay indicates that feed particles of this size are not significantly affected by small increases of dilution rate of ruminal fluid. Addition of sodium bicarbonate to an alfalfa hay (forage)-based diet did not improve production responses but did increase nutrient digestion.  相似文献   

9.
We evaluated effects of wet corn gluten feed (WCGF) and a novel product (SHSL) containing raw soybean hulls and corn steep liquor on performance and digestion in lactating dairy cows. In Experiment 1, 46 multiparous Holstein cows were assigned to control (C), WCGF (20% of diet DM), or SHSL (20% of diet DM). Diets were fed as a total mixed ration beginning after calving. The C diet contained (dry matter [DM] basis) 30% alfalfa hay, 15% corn silage, 32% corn, 9.3% whole cottonseed, 4.4% solvent soybean meal (SBM), and 3.3% expeller SBM. The WCGF replaced 10% alfalfa hay, 5% corn silage, and 5% corn grain, while expeller SBM replaced solvent SBM to maintain diet rumen undegradable protein. The SHSL replaced 10% alfalfa hay, 5% corn silage, 3% solvent SBM, and 2% corn. Dietary crude protein averaged 18.4%. Milk, energy-corrected milk (ECM), DM intake (DMI), and ECM/DMI were similar among diets during the first 13 wk of lactation. During wk 14 through 30 postpartum, WCGF and SHSL improved milk, ECM, milk component yield, and ECM/DMI. In Experiment 2, 6 cows were used to evaluate digestibility and rumen traits. Dry matter intake and total tract digestibilities of DM, fiber, and crude protein were not different among diets. Diets did not affect ruminal liquid dilution rate, pH, or concentrations of total volatile fatty acids or ammonia, but acetate:propionate was higher for C (3.38) than for WCGF (2.79) or SHSL (2.89). The WCGF and SHSL products can serve as alternative feedstuffs in diets fed to lactating dairy cattle.  相似文献   

10.
Four multiparous Holstein cows in midlactation were fed 60:40 forage:grain (dry basis) diets containing first-cutting alfalfa harvested at the early bud or early flower stage of maturity. Each of the two maturities was preserved as silage and hay. A 4 x 4 Latin square design experiment (28-d periods) was conducted to measure the impact of alfalfa maturity and method of preservation on milk production and composition, intake, digestion, digesta passage, and particle size of digesta. Milk production and composition were not affected by treatment. Increases in fiber intake resulted from increased maturity and preservation as hay, but this did not appear to limit DMI or milk production. Both increased maturity and preservation as hay resulted in the following effects in cows: more time spent ruminating, greater total chewing time, greater wet and dry rumen fill, and a greater volume of rumen contents. Rumen retention time of La applied to forage was 6 h less, and 0-h disappearance of DM from dacron bags was greater for silage than hay. In situ DM disappearance rates averaged 15%/h for silage and 9.5%/h for hay. Lag time was related inversely to 0-h disappearance. Masticates and mixed rumen samples from cows fed hay showed a greater percentage of DM as particles greater than or equal to 9.5 mm in length. Gross feed efficiency was greater for cows fed alfalfa silage than for those fed alfalfa hay, probably because of more rapid digestion and passage. The potential for rumen fill to limit intake in high producing cows appears to be greater for alfalfa preserved as hay than that preserved as silage.  相似文献   

11.
Two trials were conducted to determine particle size of masticates, ruminal digesta, and feces of dairy cows. In Trial 1, three Holstein cows with ruminal cannulae were fed prebloom alfalfa hay in long, chopped, or pelleted form in a Latin square design (21-d periods) conducted in early lactation (wk 3 to 11) and again during the dry period to attain high (3.75) and low (1.95% of BW) feed consumption. In trial 2, prebloom, midbloom, and full bloom alfalfa hay, mature bromegrass hay, and corn silage were fed to early lactation (wk 5 to 15) Holsteins in a 5 X 5 Latin square design (15-d periods). All diets (Trials 1 and 2) were formulated to 17% CP and contained forage:grain in a 60:40 ratio (DM basis). Similar particle distributions of digesta from long and chopped hay diets suggest little influence of chopping forage on particle size reduction when high quality forage is fed. The large proportion of DM in the small particle (less than .6 mm) pool in the rumen in both trials suggests that rate of escape of small particles from the rumen is an important factor influencing ruminal retention time. Increased proportion of coarse (greater than or equal to 2.36-mm screen) fecal particles at high intake and with fine grinding appears related to a reduction in chewing per unit feed consumed. Soluble DM and particulate matter passing a .063-mm screen made up a significant portion (30 to 50%) of the total DM sieved from all sampling sites in both trials.  相似文献   

12.
Lactating dairy cows were used in experiments to determine the effects of feeding a combination of fibrous by-products to replace a portion of alfalfa hay or grain. Cows were fed a control diet, consisting of alfalfa hay, corn, soybean meal, and corn silage or one of four treatment diets. In these diets, a combination of soy hulls, corn gluten feed, and wheat midds replaced approximately 30 or 60% of alfalfa hay or 25 or 50% of corn and soybean meal. A 56-d production study used 50 midlactation dairy cows in a randomized complete block design. No differences in milk production or composition among treatments were measured, except for the diet in which 60% of the alfalfa hay was replaced with fibrous by-products. Cows fed this diet had a significantly lower percentage of milk fat compared with other treatments. A fermentation study used five fistulated, multiparous lactating dairy cows in a 5 x 5 Latin square design. Cows were fed one of the five experimental diets used in the production study during five consecutive 14-d periods. Rumen acetate to propionate ratio was highest for the control and 50% concentrate replacement diets (3.27) and lowest for the 60% hay replacement diet (2.78). This shift in ruminal volatile fatty acid profile corresponded to the change in milk fat percentage, measured during the production study. A mixture of fibrous by-products fed as an alternative to hay or grain ingredients could potentially decrease feed costs without a resultant decrease in milk production by mid-lactation dairy cows.  相似文献   

13.
An experiment was conducted to evaluate the effect of a pelleted combination of raw soyhulls and condensed corn steep liquor on performance and plasma metabolites when fed to replace a portion of the grain and forage in diets for lactating dairy cows. The raw soybean hull-corn steep liquor pellet (SHSL) contained 24.2% crude protein, 8.7% rumen undegradable protein, 28.9% acid detergent fiber, 36.7% neutral detergent fiber, and 2.5% ether extract (% of dry matter, [DM]). Eighteen multiparous Holstein cows were assigned to one of three diets in a replicated 3 x 3 Latin square design with 28-d periods. Cows were blocked by pretreatment body weight and energy-corrected milk (ECM) and assigned to control, SHSL (20.7% of diet DM), or pelleted raw soybean hulls ([PSH] 14.3% of diet DM). The SHSL product replaced 6.2% alfalfa hay, 3.7% corn silage, 6.6% corn, and 3.3% soybean meal (SBM), and 1.7% expeller SBM replaced solvent SBM in order to maintain dietary levels of rumen undegradable protein. PSH replaced 6.2% alfalfa hay, 3.7% corn silage, and 5.1% corn. Diet crude protein (%) and energy density (Mcal/kg NEL) were 16.6 and 1.64, 16.3 and 1.65, 17.1 and 1.63 for control, SHSL, and PSH, respectively. Cows fed PSH consumed more DM than cows fed control, with the intake of cows fed SHSL being intermediate. SHSL and PSH increased ECM, milk protein, and solids-notfat and showed higher concentrations of milk and plasma urea N and total alpha-amino N in plasma than the control diet. Furthermore, feeding SHSL tended to improve the ratio of ECM to DM intake. There was no effect of diet on concentrations of total essential and nonessential amino acids in plasma. These production data suggest SHSL can replace a portion of the forage, grain, and SBM in diets for lactating dairy cows without decreasing lactational performance.  相似文献   

14.
Twenty-four lactating Holstein cows were used in a replicated 6 x 6 Latin square design. Experimental periods were 6 or 7 d. Cows were housed in tie-stalls, and diets were fed ad libitum twice daily at 1100 and 1600 h. Diets contained 60% concentrate and either 40% alfalfa hay or 20% alfalfa hay and 20% alfalfa silage (dry matter basis). The effect of quantity, quality, and length of hay on sorting behavior was determined. Treatments consisted of 20% lower or higher quality long alfalfa hay, 20% lower or higher quality chopped alfalfa hay, and 40% lower or higher quality chopped alfalfa hay. Variation of sorting among cows was also determined. Particle size distribution of samples of as-fed total mixed rations and orts were determined using the Wisconsin particle size separator. Screens have square holes with diagonals of 26.9, 18, 8.98, 5.61, and 1.65 mm (screens Y1 to Y5, respectively). Sorting was calculated as the actual intake of each fraction expressed as a percentage ofthe predicted intake. Increasing the proportion of dry hay increased sorting. Quality of alfalfa hays that were offered did not affect sorting activity. Feeding long alfalfa hay increased selective consumption of fine particles. However, feeding long alfalfa hay also increased intake of longer particles because a higher percentage of long particles was offered. Across treatments, animals consistently sorted against longer particles in favor of finer particles. In particular, intake of Y1 as a percentage of the predicted intake was the most variable. Average Y1 intake, across the six treatments for each cow, was between 60 and 70% of predicted intake for four cows, 71 to 80% for 11 cows, 81 to 90% for five cows, 91 to 100% for two cows, and 101 to 110% for two cows. On one diet a cow failed to consume any of the Y1 portion of the total mixed ration. This variation among animals in sorting of very long feed particles may have practical significance.  相似文献   

15.
The effect of starch source and phytic acid (PA) supplementation on phosphorus (P) partitioning and ruminal phytase activity was evaluated in eight midlactation cows (four ruminally cannulated). Cows were randomly assigned to treatments in replicated 4 x 4 Latin squares with four 18-d periods. Diets included dry ground corn (DG) or steam-flaked corn (SF), with no supplemental P (L; 0.33% P) or supplemental purified PA (0.44% P) to provide additional P from a nonmineral source. Total collection of milk, urine, and feces was conducted on d 16 to 18 of each period. Ruminal fluid was sampled and ruminal pH measured every 8 h on d 17 and 18. Milk yield was unaffected by starch source, despite lower DMI by cows fed SF. Cows fed SF had increased DM digestibility compared with those fed DG, and tended to have higher efficiency of milk yield (1.40 vs. 1.35 kg of milk/kg of DMI). Intake and fecal excretion of P was lower in cows fed SF than in cows fed DG. In cows fed SF, milk P as a percentage of P intake increased compared with cows fed DG. Ruminal pH was unaffected by diet, but milk fat content was lower for cows fed SF. Milk yield, DMI, and feed to milk ratio were not affected by supplementation with PA. Although cows fed PA had increased P intake compared with cows fed low P diet, increased P excretion resulted in no differences in apparent P digestibility. Phosphorus balance tended to be higher in cows fed PA, but milk P as a percentage of intake was reduced. The interaction of starch source and PA affected ruminal phytase activity. Altering starch source to improve efficiency of milk yield in lactating dairy cows may help reduce P losses from dairy farms.  相似文献   

16.
We used four ruminally cannulated, multiparous Holstein cows (690 kg; 21 kg/d milk) in a 2-period crossover design to determine the impact of feeding a raw soybean hull-corn steep liquor pellet (SHSL) on induced subacute ruminal acidosis (SARA) in lactating cows. Cows were fed control [30% alfalfa hay, 15% corn silage, 34% corn, 9% whole cottonseed, 5% soybean meal (SBM)] or SHSL (20% of diet DM) diets as TMR. SHSL replaced 6.2% alfalfa hay, 3.7% corn silage, 6.6% corn, and 3.3% SBM. Periods were 15 d (10 d adaptation, 2 d for prechallenge measures, and 3 d of SARA challenge). Cows were fed once daily at a common DMI dictated by the cow consuming the least. Cows were fasted 12 h before the first SARA challenge. For each of the three SARA challenges, cows were offered 75% of their daily diet at 0600 h. The remaining 25% of diet DM was replaced by ground corn, which was mixed with the orts that remained 2 h after feeding and placed into the rumen. Ruminal pH declined linearly with time after feeding, and this decrease was greater during the SARA challenges. Ruminal lactate increased linearly with repeated SARA challenges. Concentrations of total ruminal VFA increased linearly after feeding, and increases were greater when cows were challenged. No differences were observed due to SHSL inclusion. The model induced SARA, but partial replacement of alfalfa, corn silage, corn, and SBM by SHSL did not influence responses to SARA challenges.  相似文献   

17.
《Journal of dairy science》2021,104(11):11593-11608
The objective of this study was to evaluate the effect of concentrate supplement type on milk production, nutrient intake, and total-tract nutrient digestion in lactating dairy cows grazing mid-season perennial ryegrass (Lolium perenne L.; PRG) pasture. Twelve primiparous (mean ± standard deviation; 95 ± 30 d in milk and 470 ± 43 kg of body weight) and 68 multiparous (99 ± 24 d in milk and 527 ± 64 kg of body weight) lactating dairy cows were blocked based on pre-study milk yield and parity and randomly assigned to 1 of 4 dietary treatments. The 4 dietary treatments were a non-supplemented PRG control (PRG); PRG supplemented with 4.4 kg of dry matter (DM) per cow per day of citrus pulp and 0.067 kg of DM/cow per day of urea (PRG+C); PRG supplemented with 0.8 kg of DM/cow per day of heat-treated soybean meal (PRG+PP); and PRG supplemented with 3.1 kg of DM/cow per day of a combination of heat-treated soybean meal and citrus pulp (PRG+C+PP). The study consisted of a 2-wk adaptation period and a 10-wk period of data collection. Weekly measurements of milk yield, body weight, body condition score, and feeding and rumination time were made. Nutrient intake and total-tract digestibility were measured during wk 6 of the study. A large soil moisture deficit was experienced during the study that probably reduced herbage growth rate and likely altered the chemical composition of the PRG offered when compared with typical mid-season PRG. Total dry matter intake was increased in cows fed PRG+C compared with cows fed PRG and PRG+PP and was similar to cows fed PRG+C+PP (18.0, 15.9, 16.4, and 17.2 ± 0.41 kg of DM/d, respectively). The apparent total-tract neutral detergent fiber digestibility of cows fed the PRG+C diet was lower compared with the PRG and PRG+PP diets and was similar to the PRG+C+PP diet (0.67, 0.70, 0.70, and 0.69 ± 0.01 g/g, respectively). The energy-corrected milk (ECM) yield of cows fed PRG+C+PP was highest (23.7 kg/d), PRG+C was intermediate (22.2 kg/d), and PRG was lowest (20.8 kg/d). Cows fed PRG+PP produced more ECM (22.9 kg/d) compared with cows fed PRG and produced similar ECM compared with cows fed PRG+C and PRG+C+PP diets. The PRG+PP diet increased milk protein yield compared with the PRG diet, tended to increase milk protein yield compared with the PRG+C diet, and was similar to the PRG+C+PP diet. Milk fat concentration and the composition of milk fat were not influenced by treatment. The results demonstrated that, for cows consuming pasture-based diets, increasing metabolizable protein supply allowed higher milk yield as metabolizable protein was more limiting than metabolizable energy. However, due to the large soil moisture deficit experienced during this experiment, caution is recommended when extrapolating these results to cows consuming typical mid-season PRG herbage.  相似文献   

18.
The effect of feed intake in the preliminary period on responses to diets containing alfalfa silage or orchardgrass silage was evaluated using 8 ruminally and duodenally cannulated Holstein cows in a crossover design experiment with a 14-d preliminary period and two 15-d treatment periods. Responses measured were DMI, rates of fiber digestion and passage, and milk production. Cows were 139 ± 83 (mean ± SD) d in milk at the beginning of the preliminary period. During the preliminary period, 3.5% fat-corrected milk yield ranged from 23.9 to 47.6 kg/d (mean = 36.9 kg/d) and preliminary voluntary DMI (pVDMI) ranged from 14.2 to 21.3 kg/d (mean = 18.6 kg/d). The 2 treatments were a diet containing alfalfa silage as the sole forage (AL) and a diet containing orchardgrass silage as the sole forage (OG). Alfalfa silage contained 43% neutral detergent fiber (NDF; dry-matter basis) and orchardgrass silage contained 48% NDF; diets contained ∼23% forage NDF and 27% total NDF, so forage-to-concentrate ratio was 53:47 for AL and 48:52 for OG. Digestibility of NDF was lower for AL in the rumen and whole tract compared with OG, and milk fat concentration tended to be greater for OG than for AL. Mean 3.5% fat-corrected milk yield and DMI were not different between AL and OG. Response of DMI to forage family depended on pVDMI, as indicated by a significant interaction between treatment and pVDMI in predicting DMI. As pVDMI increased, DMI increased when cows were fed AL but not when they were fed OG. That is, as appetite increased, intake was more restricted for the more physically filling OG than for the less physically filling AL. This more positive DMI response to AL over OG among high-pVDMI cows is corroborated by interactions between treatments and pVDMI for both ruminal NDF turnover rate and indigestible NDF passage rate response. Therefore, the effects of alfalfa and orchardgrass forages on intake and fiber digestion depended on the extent to which fill limited feed intake of an individual cow.  相似文献   

19.
Ninety-six cows in early lactation were used in two experiments to measure the impact of alfalfa maturity (early or midbud vs. early or midbloom) and method of forage preservation (silage vs. hay) on DMI and milk production. Silage diets were fed as TMR, and hay was fed separately from grain. All diets contained 60% alfalfa (dry basis) and were balanced for 19% CP. Maturity had little effect on milk production in either experiment. Adjusted milk production for early cut silage, late cut silage, early cut hay, and late cut hay were 33.6, 33.4, 30.7, and 32.1 kg/d for Experiment 1 and 38.1, 37.0, 35.0 and 35.0 kg/d for Experiment 2. Increased alfalfa maturity tended to reduce DMI. Cows fed the silage diets consumed 1.2 kg more DM and produced an average of 2.1 kg more milk daily in Experiment 1 than those fed the hay diets. All treatment groups consumed similar amounts of DM in Experiment 2; however, cows fed silage produced 2.6 kg/d more milk than those fed hay. Preserving alfalfa as silage and feeding in a TMR to cows in early lactation resulted in greater milk production via increased DMI or improved feed efficiency compared with preserving alfalfa as hay and feeding grain separately.  相似文献   

20.
Five Holstein cows (5 wk postpartum) were used in a Latin square design (15-d periods) to determine rumen fill and fractional rates of ruminal digestion and passage. Treatments consisted of prebloom, midbloom, and full bloom alfalfa hay, mature bromegrass hay, and corn silage fed in diets containing forage: concentrate in a 60:40 ratio (DM basis) formulated to be isonitrogenous. Intake of DM averaged 4.0% of body weight for prebloom alfalfa and corn silage. Milk yield and DM intake were lower for full bloom alfalfa and bromegrass than for prebloom alfalfa. Digestibility of organic matter was 7.5 percentage units lower for full bloom than for prebloom alfalfa. Weight of DM in the rumen was higher for midbloom and full bloom alfalfa and bromegrass than with prebloom alfalfa. Ruminal retention time of Yb applied to forage was longer for bromegrass than for prebloom alfalfa. Fractional rates of in situ NDF digestion were slower for full bloom alfalfa and bromegrass than for prebloom alfalfa. Results suggest that the point of limitation of feed intake due to gut fill is dependent on forage quality as well as energy demand of the animal. Dry matter fill of the rumen was more closely related to rates of ruminal digestion and passage than to total tract digestibility or maximum digestibility after lengthy in situ fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号