首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fibronectin type III domain (FN3) is a small autonomous folding unit which occurs in many animal proteins involving in ligand binding. The beta-sandwich structure of FN3 closely resembles that of immunoglobulin domains. We have prepared a phage display library of FN3 in which residues in two surface loops were randomized. We have selected mutant FN3s which bind to a test ligand, ubiquitin, with significant affinities, while the wild-type FN3 shows no measurable affinity. A dominant clone was expressed as a soluble protein and its properties were investigated in detail. Heteronuclear NMR characterization revealed that the selected mutant protein retains the global fold of FN3. It also has a modest conformational stability despite mutations at 12 out of 94 residues. These results clearly show the potential of FN3 as a scaffold for engineering novel binding proteins.  相似文献   

2.
Rag-1 and Rag-2 are the critical components of the V-(D)-J recombinase required for site-specific recombination of the antigen receptor genes. In this study, we have examined the ability of recombinant (r) Rag-1 and Rag-2 to bind the recombination signal sequences (RSS) and have determined that rRag-1, but not rRag-2, is able to directly bind DNA. rRAG-1 DNA binding activity was found to reside within a novel amino-terminal arginine-rich (RR) domain with partial homology to a variety of nucleic acid binding domains. Although the RR-domain did not demonstrate RSS-specificity, this DNA binding domain may stabilize the interaction of RAG-1 with, or increase the affinity for, the V-(D)-J recombination signals.  相似文献   

3.
4.
5.
BACKGROUND: Double-strand breaks in chromosomal DNA of eucaryotic cells are assumed to be repaired by mechanisms of illegitimate recombination capable of direct rejoining of the broken ends. Cell-free extracts of Xenopus laevis eggs efficiently perform these end joining reactions with any pair of noncomplementary DNA termini whose single-stranded 5'- or 3'-overhangs do not exceed a length of approximately 10 nt. RESULTS: Using hairpin-shaped oligonucleotides that allow the construction of double-strand break termini with 5'- or 3'-overhangs of defined length and sequence we show that 5'-overhangs of more than 9-10 nt are exonucleolytically resected in the extract to produce shorter 5'-overhangs that can be metabolized in the end joining reaction. 5'-recessed ends in double-stranded DNA with 3'-overhangs of more than 2nt as well as the 5'-ends of single-stranded DNA also serve as substrates for the exonuclease activity. In all cases, oligomers of about 10 nt are released from the 5'-ends. CONCLUSIONS: We describe here a novel 5'-exonuclease activity present in eggs from Xenopus laevis that reproducibly removes decameric oligonucleotides from 5'-ends of double- and single-stranded DNA. A possible function of this unusual activity is discussed in the context of homologous and illegitimate genetic recombination processes.  相似文献   

6.
The nucleic acid-binding domain of Escherichia coli DNA topoisomerase III (Topo III) has been identified using a selection procedure designed to isolate inactive Topo III polypeptides. Deletion of this binding domain, contained in the carboxyl terminus of Topo III, results in a drastic reduction in the ability of the enzyme to bind to single-stranded DNA and RNA substrates. Successive truncation of the enzyme within this region results in the gradual loss of nucleic acid binding activity and in a gradual change in the mechanism of Topo III-catalyzed relaxation of negatively supercoiled DNA. The reduction of nucleic acid binding activity of the truncated polypeptides does not result in a loss of cleavage site specificity for the enzyme, suggesting that other amino acids are involved in the positioning of the nucleic acid within the nicking/closing site of the topoisomerase.  相似文献   

7.
A series of deletions were constructed in the 476 amino acid Tn5 transposase in order to assemble an initial domain structure for this protein. The first four amino acids were found to be important for transposition activity but not for DNA binding to the Tn5 outside end (OE). Larger amino-terminal deletions result in the complete loss of transposition in vivo and the concomitant loss of specific DNA binding. Four point mutants and a six base-pair deletion in the amino terminus between residues 20 and 36 were also found to impair DNA binding to the OE. Analysis of a series of carboxy-terminal deletions has revealed that the carboxy terminus may actually mask the DNA binding domain, since deletions to residues 388 and 370 result in a large increase in DNA binding activity. In addition, the carboxy-terminal deletion to residue 370 results in a significant increase in the mobility of the Tnp-OE complex indicative of a change in the oligomeric state of this complex. Further carboxy-terminal deletions beyond residue 370 also abolished DNA binding activity. These results indicate that the first four amino acids of Tnp are important for transposition but not DNA binding, a region between residues 5 and 36 is critical for DNA binding, the wild-type carboxy terminus acts to inhibit DNA binding, and that a region towards the carboxy terminus, defined by residues 370 to 387, is critical for Tnp multimeric interactions.  相似文献   

8.
BACKGROUND: CINCA syndrome is a clinical syndrome of unclear etiology, characterized by a chronic multi-organ inflammatory process unsusceptible to treatment. CASE REPORT: An 18-month-old boy was admitted because he suffered, since the age of 2 months, from cutaneous, articular and neurological changes, lymphadenopathy, hepatosplenomegaly, choroiditis and psychosomatic development retardation. These clinical symptoms were unsusceptible to anti-inflammatory and antihistaminic drugs. Rehabilitation was not effective either. CONCLUSION: A long-term clinical observation is required before sustained multi-organ changes beginning in early childhood and exclusion of other chronic inflammatory diseases enable the diagnosis of CINCA syndrome.  相似文献   

9.
The 3D solution structure of the GCC-box binding domain of a protein from Arabidopsis thaliana in complex with its target DNA fragment has been determined by heteronuclear multidimensional NMR in combination with simulated annealing and restrained molecular dynamic calculation. The domain consists of a three-stranded anti-parallel beta-sheet and an alpha-helix packed approximately parallel to the beta-sheet. Arginine and tryptophan residues in the beta-sheet are identified to contact eight of the nine consecutive base pairs in the major groove, and at the same time bind to the sugar phosphate backbones. The target DNA bends slightly at the central CG step, thereby allowing the DNA to follow the curvature of the beta-sheet.  相似文献   

10.
The biochemical activities that underlie the genetically defined activator and repressor functions of the VIVIPAROUS1 (VP1) protein have resisted in vitro analysis. Here, we show that a glutathione S-transferase (GST) fusion protein, including only the highly conserved B3 domain of VP1, has a highly cooperative, sequence-specific DNA binding activity. GST fusion proteins that include larger regions of the VP1 protein have very low activity, indicating that removal of the flanking protein sequences is necessary to elicit DNA binding in vitro. DNA competition and DNase I footprinting analyses show that B3 binds specifically to the Sph element involved in VP1 activation of the C1 gene, whereas binding to the G-box-type VP1-responsive element is of low affinity and is nonspecific. Footprint analysis of the C1 promoter revealed that sequences flanking the core TCCATGCAT motif of Sph also contribute to the recognition of the Sph element in its native context. The salient features of the in vitro GST-B3 DNA interaction are in good agreement with the protein and DNA sequence requirements defined by the functional analyses of VP1 and VP1-responsive elements in maize cells.  相似文献   

11.
The small GTP-binding protein ADP-ribosylation factor-1 (ARF1) regulates intracellular transport by modulating the interaction of coat proteins with the Golgi complex. Coat protein association with Golgi membranes requires activated, GTP-bound ARF1, whereas GTP hydrolysis catalyzed by an ARF1-directed GTPase-activating protein (GAP) deactivates ARF1 and results in coat protein dissociation. We have recently cloned a Golgi-associated ARF GAP. Overexpression of GAP was found to result in a phenotype that reflects ARF1 deactivation (Aoe, T., Cukierman, E., Lee, A., Cassel, D., Peters, P. J., and Hsu, V. W. (1997) EMBO J. 16, 7305-7316). In this study, we used this phenotype to define domains in GAP that are required for its function in vivo. As expected, mutations in the amino-terminal part of GAP that were previously found to abolish ARF GAP catalytic activity in vitro abrogated ARF1 deactivation in vivo. Significantly, truncations at the carboxyl-terminal part of GAP that did not affect GAP catalytic activity in vitro also diminished ARF1 deactivation. Thus, a noncatalytic domain is required for GAP activity in vivo. This domain may be involved in the targeting of GAP to the Golgi membrane.  相似文献   

12.
Human immunodeficiency virus (HIV) Tat is chemotactic for monocytes and dendritic cells, an activity that could play a key role in the expansion of HIV infection of accessory cells. To date, domains of Tat previously found to interact with cell surface molecules have shown only partial chemotactic activity toward monocytes. Using overlapping Tat peptides, we identify a novel region of Tat with a potent chemotactic activity for monocytes, reaching levels equal to Tat itself. This peptide also provokes monocyte polarization similar to Tat and is able to compete with Tat for induction of monocyte migration. Specific high affinity (kd = 3 x 10(-9) M) cell surface binding sites on monocyte cell surfaces for this region of Tat are demonstrated. These data indicate that the majority of Tat effects on monocytes are mediated by a novel region in the cysteine-rich and core domains. These domains are highly conserved among different HIV isolates, suggesting an important role in the establishment of HIV infection.  相似文献   

13.
14.
Proteolytic processing of capsid assembly protein precursors by herpesvirus proteases is essential for virion maturation. A 2.5 A crystal structure of the human cytomegalovirus protease catalytic domain has been determined by X-ray diffraction. The structure defines a new class of serine protease with respect to global-fold topology and has a catalytic triad consisting of Ser-132, His-63, and His-157 in contrast with the Ser-His-Asp triads found in other serine proteases. However, catalytic machinery for activating the serine nucleophile and stabilizing a tetrahedral transition state is oriented similarly to that for members of the trypsin-like and subtilisin-like serine protease families. Formation of the active dimer is mediated primarily by burying a helix of one protomer into a deep cleft in the protein surface of the other.  相似文献   

15.
Mitochondrial processing peptidase, a metalloendopeptidase consisting of alpha- and beta-subunits, specifically recognizes a large variety of mitochondrial precursor proteins and cleaves off N-terminal extension peptides. The enzyme requires the basic amino acid residues in the extension peptides for effective and specific cleavage. To elucidate the mechanism involved in the molecular recognition of substrate by the enzyme, several glutamates around the active site of the rat beta-subunit, which has a putative metal-binding motif, H56XXEH60, were mutated to alanines or aspartates, and effects on kinetic parameters, metal binding, and substrate binding of the enzyme were analyzed. None of mutant proteins analyzed was impaired in dimer formation with the alpha-subunit. Mutation of glutamates at positions 79, 129, and 136, in addition to an active-site glutamate at position 59, resulted in a marked decrease in cleavage efficiency. Together with sequence alignment data, glutamate 136 appears to be involved in metal binding. Glutamate 129 is mostly responsible for the catalysis, as there was a considerable decrease in kcat value by the mutation. Mutation of glutamate 79 led to decrease in kcat value and increase in Km values. Substrate binding experiments using an environmentally sensitive fluorescence probe attached to the peptide showed that the mutation caused a remarkable environmental change at the binding site to the N-terminal region of the substrate peptide and decreased binding of the peptide, thereby suggesting that glutamate 79 participates primarily in substrate binding. Thus, some glutamate residues required for substrate binding and cleavage activity have been identified.  相似文献   

16.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein in eukaryotic cells. The DNA binding activity of human RPA has been previously localized to the N-terminal 441 amino acids of the 70-kDa subunit, RPA70. We have used a combination of limited proteolysis and mutational analysis to define the smallest soluble fragment of human RPA70 that retains complete DNA binding activity. This fragment comprises residues 181-422. RPA181-422 bound DNA with the same affinity as the 1-441 fragment and had a DNA binding site of 8 nucleotides or less. RPA70 fragments were subjected to crystal trials in the presence of single-stranded DNA, and diffraction quality crystals were obtained for RPA181-422 bound to octadeoxycytidine. The RPA181-422 co-crystals belonged to the P2(1)2(1)2(1) space group, with unit cell dimensions of a = 34.3 A, b = 78.0 A, and c = 95.4 A and diffracted to a resolution of 2.1 A.  相似文献   

17.
18.
1. Sequence analyses of APEX nuclease, a mammalian major apurinic/apyrimidinic (AP) endonuclease homologous to Escherichia coli exonuclease III, suggested that APEX nuclease is organized into two domains, a Mr 6000 N-terminal domain containing nuclear location signals and a Mr 29,000 C-terminal catalytic domain. 2. In order to study the enzyme structure further, vectors expressing APEX nuclease (pTAPXH1) and the Mr 29,000 C-terminal region (pTAPXH61) were constructed using cDNA (APX cDNA) for the human APEX nuclease and pTrc99A plasmid. The constructs were introduced into BW2001 strain (xth-11, nfo-2) cells of E. coli to produce transformants designated as BW2001/pTAPXH1 and BW2001/pTAPXH61, respectively. Both the APEX nuclease expressed in BW2001/pTAPXH1 and the Mr 29,000 C-terminal peptide expressed in BW2001/pTAPXH61 were partially purified by column chromatography and highly purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 3. The purified APEX nuclease and the Mr 29,000 C-terminal peptide both showed equally high AP endonuclease activity which indicates that the Mr 29,000 C-terminal region of the APEX nuclease is (or contains) the AP endonuclease domain.  相似文献   

19.
20.
Introduction of a retroviral expression vector for the aryl hydrocarbon receptor (AHR) restores CYP1A1 inducibility to a mutant derivative of the Hepa-1 cell line that is defective in induction of CYP1A1 by ligands for the receptor. An AHR protein with normal ligand binding activity is expressed in the mutant but ligand treatment of mutant cell extract fails to induce binding of the AHR. ARNT (aryl hydrocarbon receptor nuclear translocator) dimer to the xenobiotic responsive element (XRE). AHR cDNAs derived from the mutant encode a protein that is unimpaired in ligand-dependent dimerization with ARNT, but the AHR.ARNT dimer so formed is severely impaired in XRE binding activity. The mutant cDNAs contain a C to G mutation at base 648, causing a cysteine to tryptophan alteration at amino acid 216, located between the PER-ARNT-SIM homology region (PAS) A and PAS B repeats. Introduction of the same mutation in the wild-type AHR sequence by site-directed mutagenesis similarity impaired XRE binding activity. Substitution with the conservative amino acid, serine, had no effect on XRE binding. The tryptophan mutation, but not the wild-type allele, was detectable in genomic DNA of the mutant. The implication that an amino acid within the PAS region may be involved in DNA binding indicates that the DNA binding behavior of AHR may be more anomalous than previously suspected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号