首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 61 毫秒
1.
神经网络集成技术能有效地提高神经网络的预测精度和泛化能力,已成为机器学习和神经计算领域的一个研究热点。针对回归分析问题提出了一种动态确定结果合成权重的神经网络集成构造方法,在训练出个体神经网络之后,根据各个体网络在输入空间上对训练样本的预测误差,应用广义回归网络来动态地确定各个体网络在特定输入空间上的权重。实验结果表明,与传统的简单平均和加权平均方法相比,本集成方法能取得更好的预测精度。  相似文献   

2.
基于个体选择的动态权重神经网络集成方法研究   总被引:1,自引:0,他引:1  
神经网络集成技术能有效地提高神经网络的预测精度和泛化能力,已成为机器学习和神经计算领域的一个研究热点。该文针对回归分析问题提出了一种结合应用遗传算法进行个体选择和动态确定结果合成权重的神经网络集成构造方法。在训练出个体神经网络之后,应用遗传算法对个体网络进行选择,然后根据被选择的各个体网络在输入空间上对训练样本的预测误差,应用广义回归网络来动态地确定各个体网络在特定输入空间上的合成权重。实验结果表明,与仅应用个体网络选择或动态确定权重的方法相比,该集成方法基本上能取得更好地预测精度和相近的稳定性。  相似文献   

3.
传统网络信息资源个性化推荐方法无法存储长期信息,导致推荐精度低,召回率高。因此,研究基于广义回归神经网络的网络信息资源个性化推荐方法。首先,获取初始兴趣偏好特征数据,分配相应权重进行归一化处理;其次,确定训练样本的收敛范围,调整权值得到不同层神经元之间的连接权值和阈值,并输出匹配结果;最后,运用过滤推荐算法计算环境网络信息资源偏好和用户网络关系,得到训练样本相似度,生成近似数据集,根据偏好完成个性化推荐。实验结果表明,该方法的召回率最低,推荐准确程度高。  相似文献   

4.
探讨了广义回归神经网络的原理和相关算法,将广义回归神经网络应用于赤潮预警,并以米氏凯伦藻为例进行了实验.与目前使用较为广泛的BP神经网络进行比较,结果表明,广义回归神经网络的预警效果要优于BP网络,具有较高的实用价值.  相似文献   

5.
软件可靠性增长模型在可靠性评估与保障中具有重要作用,针对软件测试过程中的故障检测和排错等待延迟问题,提出了一种考虑故障排错等待延迟的广义动态集成神经网络模型(RWD-SRGM)。该模型考虑软件工程的多样性,利用神经网络方法构建广义动态集成模型,并考虑排错等待延迟现象完成故障检测和预测。通过2组真实失效数据集(DS1和DS2)的实验,将所提模型与现有的软件可靠性增长模型进行了比较,结果显示考虑故障排错等待延迟的神经网络模型拟合效果最优,表现出了更好的软件可靠性评估性能和模型通用性。  相似文献   

6.
随着工业生产规模扩大、生产过程日趋复杂,人们对过程模拟提出了更高的要求。提出一种基于改进聚类分析的神经网络集成方法。首先,根据数据密度分布,改进传统K-均值聚类分析中初始中心点选取的不足,对样本进行分类,扩大样本间的差异性;第二,运用具有快速学习能力的广义回归神经网络算法对各类样本建立个体神经网络并进行训练;第三,对所有样本增加构造补偿神经网络,进行误差补偿,以消除由于选择错误造成的输出误差;最后,根据计算得到的聚类中心对输入样本进行数值分析,选择输出个体神经网络,并与构造的补偿网络输出进行比较,最终实现神经网络集成。通过人工数据Sinc验证模型,此方法有效提高了模型精度,对提高过程模拟准确性提供了新途径。  相似文献   

7.
基于广义回归神经网络的传感器故障诊断研究   总被引:3,自引:0,他引:3  
针对诊断传感器偏置故障与漂移故障的难点问题,提出了一种基于广义回归神经网络(GRNN)的传感器故障诊断方法。该方法充分利用控制系统闭环回路测控信息,建立一组多输入单输出GRNN观测器,通过将观测器输出与传感器实际输出相比较获取残差序列,获得基于残差序列的传感器偏置故障和漂移故障的辨识策略,实现控制系统传感器故障在线诊断。仿真结果表明:该方法可以快速准确地检测和分离传感器故障,辨识传感器故障类型、故障大小以及故障发生的时间。  相似文献   

8.
为了有效提高神经网络的集成性能,提出了基于局部分类精度估计的动态自适应选择集成的思想.根据贝叶斯理论,证明了在满足一定假设的条件下,动态自适应选择集成的分类性能可以逼近最优贝叶斯分类器.在此基础上,分别介绍了硬决策和软决策两种个体网络选择方法.选自UCI机器学习数据库的5个数据集的实验结果表明,动态自适应选择的分类性能明显优于常用的投票法和平均法,且集成分类性能对邻域的大小并不敏感;其中,软决策方法要优于硬决策方法.  相似文献   

9.
张全平  吴耿锋 《计算机工程》2008,34(23):199-201
提出基于人工免疫网络的神经网络集成方法AINEN。在用Bagging生成神经网络集成之后,将人工免疫网络的原理应用到神经网络集成,组成了一个从微观上看是一个一个的神经网络,而从宏观上看是一个大的人工免疫网络的集成。通过在微观层次上提高神经网络集成的个体之间的异构度,在宏观层次上提高免疫网络的适应度,从而降低集成的泛化误差。AINEN与GASEN方法在标准数据集上进行的实验表明,AINEN能取得更小的泛化误差。  相似文献   

10.
基于神经网络集成的舌苔分类方法   总被引:13,自引:0,他引:13  
提出一种基于神经网络集成的舌苔自动分类方法。该方法把经单独训练的具有一定差异度的单个BP神经网络加以集成,构成舌苔分类器。试验结果表明,该分类器比现有的舌苔分类方法识别率更高、分类更细、更符合中医舌诊要求。  相似文献   

11.
神经网络集成的设计与应用   总被引:1,自引:0,他引:1  
传统的神经网络一般采用个体网络,其应用效果很大程度上取决于使用者的经验,且网络的泛化能力不强.一种改进的神经网络集成方法,为传统神经网络存在的问题提供了一个简易的解决方案.由理论分析和实验结果可以得出结论,神经网络集成方法比传统的个体网络方法的效果更好.  相似文献   

12.
神经网络集成通过训练多个神经网络并将其结论进行适当的合成,可以显著地提高学习系统的泛化能力.然而,设计一个好的神经网络集成必须在个体准确性与彼此差异性之间取得一个平衡.本文提出了一种改进的神经网络集成构造方法--基于噪声传播的神经网络集成算法(NSENN).  相似文献   

13.
提出一种改进的选择神经网络集成方法,首先构造一批单个神经网络个体,分别利用Bootstrap算法产生若干个训练集并行进行训练;然后采用聚类算法计算训练好的个体网络之间的差异度和个体网络在验证集的预测精度;最后根据个体精度和个体差异度选择合适的个体网络加入集成.实验结果验证,该集成方法能较好地提高集成的预测精度和泛化能力.  相似文献   

14.
粗糙RBF神经网络集成的模式识别方法   总被引:1,自引:0,他引:1  
提出一种定义属性重要度的方法,并根据属性的重要度测量元素之间的距离,以确定训练集的聚类情况.由于聚类的不确定性,提出利用粗糙集方法确定精确的下、上近似集合,用其聚类中心作为RBF神经网络的径向基中心,设计两个基函数中心不同的RBF神经网络.最后在经验风险最小化原则下,确定两个网络的每个输出值的置信度,得到神经网络集成的最终输出.网络的训练采用递推最小二乘方法,通过两个模式识别仿真实例验证该方法的有效性和正确性.  相似文献   

15.
含天然气水合物饱和度的计算是储层优选和资源量评估的关键参数,针对目前数据解释模型计算精度低以及模型输入参数少等问题,提出了一种基于电阻抗特性参数和集成神经网络的软测量模型建立方法。在对电阻抗谱数据进行预处理、特征参数提取以及选择的基础上形成了样本集,针对四对传感器分别设计了BP神经网络,采用平均法作为集成策略将四个BP网络作为子网络进行集成得到集成网络模型。模型测试结果表明:通过集成网络模型计算得到的含水合物饱和度值平均相对误差3.33%、平均绝对误差0.0014、均方根误差为6.56%,三项误差指标均低于各个子网络的计算误差。在宽频范围内对含水合物沉积物进行电阻抗谱测试能够获得沉积物的频率响应特性以及特性描述参数,可为神经网络模型提供大量的输入参数;利用集成神经网络能够综合应用位于不同测量方位的多个传感器的测量数据,通过采用适合的集成策略能够克服水合物空间分布不均匀对饱和度计算准确度的不利影响。  相似文献   

16.
BP神经网络在目前的非线性系统中应用广泛,但是作为有导师的学习系统,BP神经网络必须要求提供相关的经验数据才能正常运行,这对一般系统来说是非常麻烦和不现实的。对此文章提出了一种基于神经网络集成的强化学习BP算法,通过强化学习体系来实现体统的自学习,通过网络集成来达到初始数据的预处理,提高系统的泛化能力,并在实际应用中取得较好的效果。  相似文献   

17.
基于粗糙集属性约减和神经网络集成的人脸识别技术*   总被引:1,自引:0,他引:1  
提出了一种基于粗糙集的属性约简方法对经由PCA处理后的人脸特征进行提取,随后使用一种神经网络集成的方法对约简后的人脸数据进行识别。实验结果表明,使用该方法约简后的数据与使用仅由PCA处理后的数据相比,两者获得的识别精度基本相同,而前者的数据属性维数远小于后者,从而大大降低了识别过程的复杂程度。  相似文献   

18.
Complex jargon represents an impediment to newcomers to the field of neural networks. This document presents a glossary of some of the basic terminology that may be encountered in the literature, with an emphasis on the use of multilayer perceptrons and radial basis functions for regression problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号