首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
1,4-二硝基呋咱并[3,4-b]哌嗪(DNFP)的合成   总被引:5,自引:5,他引:0  
设计合成了高能量密度材料1,4-二硝基呋咱并[3,4-b]哌嗪(DNFP)。即以N,N'-二叔丁基乙二胺为起始原料,低温条件下与二氯乙二肟缩合环化生成1,4-二叔丁基哌嗪-2,3-二酮肟(PDO—tB),而后在氢氧化钠的乙二醇溶液中高温反应脱水环化得1,4-二叔丁基呋咱并[3,4-b]哌嗪,经98%硝酸和硫酸的混酸体系硝解合成出DNFP,总收率32.6%,采用红外光谱、核磁共振谱、元素分析对DNFP和中间体结构进行了表征;改进了PDO—tB的合成工艺条件,加料方式由一次性加入改为缓慢滴加,并确定了适宜的冷浴温度为-18℃;研究了不同硝解体系对反应的影响,确定了适宜的硝解体系为硝硫混酸,硝解收率为61.7%。  相似文献   

2.
以5,6-二氯呋咱并[3,4-b]吡嗪为原料,经叠氮化、胺化两步反应分别制得7-叠氮基呋咱并[3,4-b]四唑并[1,2-d]吡嗪(AzF TP)和7-氨基呋咱并[3,4-b]四唑并[1,2-d]吡嗪(AmF TP),并首次培养了AmF TP的单晶。X射线单晶衍射分析结果表明:AmF TP晶体属于正交晶系,P212121空间群,a=0.7117(18)nm,b=0.8088(2)nm,c=1.1871(8)nm,V=0.6833(3)nm3,Z=4,D-3c=1.732 g·cm,μ=0.138 mm-1,F(000)=360,R1=0.0376,wR2=0.0988;采用差示扫描量热(DSC)、热重(TG)分析考察了目标化合物的热性能,热分解峰温分别为149.9,186.0℃,表明AmF TP比AzF TP具有更好的热稳定性。  相似文献   

3.
以无水甲醇为溶剂,在10~15℃下采用溶剂挥发法培养并首次获得了LLM-208的单晶,运用Hirshfeld表面理论方法研究了晶体内分子间的相互作用,利用Kissinger法、Flynn-Wall-Ozawa法和Starink法计算LLM-208的热分解动力学参数。结果表明:LLM-208在130 K的晶体密度为1.895 g·cm~(-3),298 K下其晶体密度为1.848 g·cm~(-3),属于单斜晶系,C2空间群,晶胞参数为a=19.225(5),b=5.5779(15),c=6.4176(17),β=108.551(5)°,V=909.4(6)~3,Z=2,μ=0.192 mm~(-1),F(000)=376。Hirshfeld表面分析LLM-208晶体内占主导的近相互作用分别为O…H、H…O作用(35.0%),O…O作用(22.3%),以及F…O、C…F、F…F作用(12.5%)。LLM-208在Kissinger法、Flynn-Wall-Ozawa法和Starink法下的活化能分别为112.28,114.49,112.49 k J·mol~(-1),Kissinger法计算得指前因子为10~(21.30)s~(-1)。  相似文献   

4.
以自制的5,6-二氯呋咱并[3,4-b]吡嗪(DCFP)为原料,经取代、硝化-环化、中和、N-氨化等反应设计合成了新型N-氨基化合物——4-氨基-1,2,3-三氮唑[4,5-e]呋咱并[3,4-b]吡嗪-6-氧化物(ATFPO),采用红外光谱、核磁共振(~1H NMR、~(13)C NMR)及元素分析等手段确定了中间体及目标物的结构;获得了关键中间体——1,2,3-三氮唑[4,5-e]呋咱并[3,4-b]吡嗪-6-氧化物四乙基铵盐(TTFPO)的单晶并进行了结构解析,TTFPO晶体为单斜晶系,空间群为P2(1)/c,晶胞参数为:a=9.237(2) A,b=22.1 62(5)A,c=7.3506(1 7) A,α=90°,β=98.378(4)°,γ=90°,V=1 488.6(6) A~3,Z=4,μ=0.1 00 mm~(-1),F(000)=656;采用差示扫描量热(DSC)方法研究了ATFPO的热性能,结果表明,其熔点为208.77℃,3个热分解峰温度分别为247.1 3、293.68℃和378.29℃;采用Gaussian 09程序中CBS-4M方法和Kamlet-Jacobs爆轰方程预估了目标物的爆轰性能,其生成热为705.4 kK·mol~(-1),爆速为8743 m·s~(-1),爆压为34.6 GPa,爆热为5970 kJ·kg~(-1);采用BAM落锤法测试了ATFPO机械感度,其撞击感度为35 J。研究结果表明,ATFPO是一种热稳定性好、钝感、爆轰性能优良的高能量密度化合物。  相似文献   

5.
新型高能不敏感含能材料的合成对于武器装备能量水平和安全性的提升有重要意义。以5,6-二氨基呋咱并[3,4-b]吡嗪为原料,经氧化反应首次合成了5,6-二氨基呋咱并[3,4-b]吡嗪-4,7-二氧化物(DAFPO),用核磁共振(氢谱、碳谱、氮谱)、红外光谱和元素分析对其进行了表征。以乙酸乙酿为溶剂使用缓慢蒸发法获得了DAFPO-2H_2O的单晶,利用X-射线单晶衍射和Hirshfeld表面分析完成了结构解析和分子间相互作用研究。结果表明,DAFPO·2H_2O属正交晶系,Pna2_1空间群,296 K下晶体密度1.806 g·cm~(-3),分子间存在较强的O…H和N…H氢键作用。使用差示扫描量热法(DSC)和热失重法(TG/DTG)进行热分析,结果显示其热分解峰温为131.8℃。基于原子化反应利用Gaussian 09计算DAFPO的固相生成热为753.5 kJ·mol~(-1),由气体膨胀置换法测得其密度1.86 g·cm~(-3),使用EXPLO5预测其理论爆速和理论爆压分别为8836 m·s~(-1)和36.0 GPa,采用BAM标准方法测得其撞击感度大于40 J,摩擦感度大于360 N。性能研究结果表明,DAFPO是一种兼具较高能量水平和优良安全性能的新型不敏感含能材料。  相似文献   

6.
介绍了新型炸药N,N'-双(2,4-二硝基苯并氧化呋咱基)-3,4-二氨基呋咱的重要中间体N,N'-双(间氯苯基)-3,4-二氨基呋咱的合成.即在碱性介质中,二氯乙二肟与间氯苯胺反应,生成化合物(Ⅲ).化合物(Ⅲ)在乙二醇的氢氧化钠溶液中高温脱水,制得化合物(Ⅳ).根据红外光谱、核磁共振、元素分析、质谱等分析数据确定了它们的结构.  相似文献   

7.
3,4-二氨基呋咱基氧化呋咱的合成   总被引:5,自引:6,他引:5  
以丙二腈为原料经三步反应合成出含能材料3,4-二氨基呋咱基氧化呋咱(DAFF).利用IR,MS,1H-NMR,13C-NMR和元素分析对其分子结构进行了鉴定,给出了DAFF及其两种中间体的紫外特征吸收波长.该物质是一种重要的前体化合物,由它可以衍生出系列重要的由呋咱环和氧化呋咱环共同构建的高能量密度化合物.  相似文献   

8.
以FOX-7和乙二醛为原料,经过两步缩合环化反应和硝化反应,首次设计并合成出了一种新型的呋咱稠环硝胺化合物6-偕二硝基乙烯基-4,5,8-三硝基-5,6,7,8-四氢化-4H-咪唑烷并[4,5-e]呋咱并[3,4-b]哌嗪(PNEIFP)。采用Gaussian 09程序和VLW方程计算PNEIFP的密度、生成焓和爆速分别为2.02 g·cm-3、724.1 kJ·mol-1和9681.0 m·s-1。利用TLC跟踪实验的方法,确定PNEIFP室温下易分解。  相似文献   

9.
利用动态激光法测定了3,4-二硝基呋咱基氧化呋咱(DNTF)在V(乙酸)∶V(水)=7∶3的混合溶剂中的溶解度及超溶解度,并用Apelblat方程对溶解度数据进行拟合。通过正交试验考察影响结晶产品的四个主要因素(起始温度、搅拌速率、降温速率和晶种量),并得到最优结晶工艺条件为:起始温度85℃,搅拌速率400 r·min~(-1),降温速率0.25℃·min~(-1),晶种量应为所加DNTF固体质量的5%。最优结晶工艺条件下结晶产品收率可达91.7%,纯度高达99.72%,晶体密度为1.876 g·cm~(-3),用2 kg落锤测得特性落高H50为36.38 cm,用电子显微镜观察晶体的形貌规则且统一,用XRD粉末衍射仪对产品进行表征,结果显示结晶产品没有转晶,用百特激光粒度仪对产品粒度分布进行表征,结果显示产品粒度分布较窄且粒度均一。  相似文献   

10.
以二氨基呋咱(DAF)为原料合成了含能化合物5,10-双(偕二硝基甲基)-呋咱并[3,4-e]双([1,2,4]三唑并)[4,3-a:3',4'-c]吡嗪(BOBTP,七步合成总收率10%),通过中和反应与一系列富氮阳离子搭配制备出了相应的含能离子化合物;采用X-射线单晶衍射(XRD)、傅里叶变换红外光谱(FT-IR)、核磁共振(~1H NMR、~(13)C NMR)、元素分析等手段对其结构进行了表征;利用热重法(TG)-差示扫描量热法(DSC)测定了它的热分解温度;运用Explore5 v6.02软件计算了其爆轰性能。结果表明,BOBTP的二钾盐(BOBTPK)的晶体属于单斜晶系,C2/c空间群,晶胞参数为a=1.9913(3)?,b=0.93491(12)?,c=1.6807(2)?,β=90.160(3)°,V=3129.0(7)?~3,Z=8,D_c=2.103 g·cm~(-3),M=1.752 mm~(-1),F(000)=1976。对所得的基于BOBTP的含能离子化合物,25℃时的实测密度范围为1.62~1.75 g·cm~(-3);热分解反应的onset温度范围为186~232℃;计算爆速大于7500 m·s~(-1),爆压大于20 GPa;实测撞击及摩擦感度较低,其中BOBTP的二羟胺盐的撞击感度为18 J,摩擦感度为240 N。  相似文献   

11.
Two energetic compounds——4-aminodifurazano[3,4-b,e]pyrazine( ADFP) and 4,8-diaminodifurazano[3,4-b,e]pyrazine( DADFP) w ere prepared via N-amination reaction and their structures w ere characterized by IR,1HNMR,13CNMR,MS and elemental analysis. T he themal properties of ADFP and DADFP w ere analyzed by differential scanning calorimetry and thermogravimetry techniques. R esults show that DADFP melts concomitantly w ith decomposition at 284. 3 ℃. T he melting point of ADFP is 218. 1 ℃ and its first decomposition temperature is 247. 1 ℃,w hich indicate that ADFP and DADFP have good thermal stability.  相似文献   

12.
以3,4?二氨基呋咱和草酸为原料经酰胺缩合反应一步法直接合成了[1,2,5]噁二唑[3,4?b]吡嗪?5,6?(1H,3H)?二酮(1),并进一步与碱反应合成了该化合物的离子盐2~5。通过红外、核磁共振氢谱和碳谱对化合物1~5进行了结构表征;并通过X?射线单晶衍射对化合物1和5的单晶结构进一步表征;利用差示扫描量热法(DSC)研究了化合物1~5的热行为,化合物1~5的热分解温度在210.5~313.5℃之间;采用Gaussian 09程序和Explo 5(v.6.01)评估了化合物1~5的爆轰性能,计算爆速在7327~8555 m·s-1之间,爆压在20.5~30.6 GPa范围内;利用BAM感度测试仪进行感度测试,化合物1的撞击感度为27 J,摩擦感度为280 N,其胺盐、肼盐、羟胺盐的撞击感度均大于40 J,摩擦感度均为360 N,钠盐的撞击感度为7 J,摩擦感度为120 N。其中肼盐和羟胺盐有望作为新型的高能低感含能材料。  相似文献   

13.
设计了一种新化合物(7-氨基-6-硝基-[1,2,5]噁二唑并[3,4-b]吡啶-1-氧化物)的合成方法。以2-氯-4-氨基吡啶为起始原料,经硝化、叠氮化、热解环化得到目标化合物,总收率为42%,并采用核磁共振、红外、质谱、元素分析对其进行结构表征。利用差示扫描量热法研究了目标化合物的热性能,其分解温度为215.93℃,按GJB772A-1997方法实测摩擦感度和撞击感度都为0,表明7-氨基-6-硝基-[1,2,5]噁二唑并[3,4-b]吡啶-1-氧化物是一种钝感含能化合物。  相似文献   

14.
发展具有高能、低感、高热稳定性的新型含能材料是人们一直追求的目标。本研究设计、合成了一系列基于四唑连4,8-双呋咱并[3,4-b,e]吡嗪(DFP)的含能离子盐。含能离子盐具有优异的综合性能,如热分解温度较高(Td:> 260 ℃),感度较低(IS≥ 20 J,FS≥360 N)和爆速较高等(D > 8800 m·s-1)。值得特别指出的是,化合物4e的热分解温度高达314 ℃,并且其爆速及撞击感度分别为9005 m·s-1和25 J,是一种极具潜力的钝感高能量密度材料。  相似文献   

15.
张君君  申程  王鹏程  陆明 《含能材料》2017,25(5):391-395
以六氢咪唑[4,5-d]咪唑-2(1H)-亚胺为原料,通过三个阶段硝化反应合成了一种新型多环氮杂环含能化合物:N~(-1),4,6-三硝基六氢咪唑[4,5-d]咪唑-2(1H)-亚硝胺(TNINA),总收率55%。采用红外光谱(IR)、核磁共振(NMR)、质谱(MS)对目标产物以及中间体进行了表征,同时研究了时间、温度、乙酸酐与硝酸体积比等因素对第三阶段硝化反应的影响。利用热重分析(TG)和差示扫描量热仪(DSC)研究了TNINA的热性能,DSC结果显示其热分解温度为214.4℃,且放热过程瞬间完成。用Monte-Carlo方法估算TNINA的理论密度为1.91 g·cm~(-3),真密度仪测得其密度为1.89 g·cm~(-3)。用Kamlet-Jacobs方程估算出其爆热为5513.26 kJ·kg~(-1),爆速为8.836 km·s~(-1),爆压为35.80 GPa,撞击感度H50的计算值为41 cm,测试值为53 cm。理论计算结果与实验数据说明TNINA与RDX相比拥有更优异的爆轰性能与更低的感度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号