首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (1 ? y)Nd1?xYbx(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of the Nd1?xYbx(Mg0.5Sn0.5)O3 ceramics revealed that Nd1?xYbx(Mg0.5Sn0.5)O3 is the main crystalline phase, which is accompanied by a little Nd2Sn2O7 as the second phase. An apparent density of 6.87 g/cm3, a dielectric constant (? r ) of 19.48, a quality factor (Q × f) of 117,300 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?61 ppm/°C were obtained when the Nd0.96Yb0.04(Mg0.5Sn0.5)O3 ceramics were sintered at 1,600 °C for 4 h. The temperature coefficient of resonant frequency (τ f ) increased from ?61 to ?3 ppm/°C as y increased from 0 to 0.6 when the (1 ? y)Nd0.96Yb0.04(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were sintered at 1,600 °C for 4 h. 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic that was sintered at 1,600 °C for 4 h had a τ f of ?3 ppm/°C.  相似文献   

2.
In this paper, we study the behavior of the B-site behavior with the incorporation of Sn4+ ion in (Ca0.8Sr0.2)TiO3 ceramics. An excess of Sn4+ resulted in the formation of a secondary phase of CaSnO3 and SrSnO3 affecting the microwave dielectric properties of the (Ca0.8Sr0.2)(SnxTi1?x)O3 ceramics. The dielectric properties of the (Ca0.8Sr0.2)(SnxTi1?x)O3 ceramics were improved because of the solid solution of Sn4+ substitution in the B-site. The temperature coefficient of resonant frequency (τf) of the (Ca0.8Sr0.2)(SnxTi1?x)O3 ceramics also improved with increasing Sn content.  相似文献   

3.
4.
The (1 ? y)Nd(1?2x/3)Bax(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of the Nd(1?2x/3)Bax(Mg0.5Sn0.5)O3 ceramics revealed that Nd(1?2x/3)Bax(Mg0.5Sn0.5)O3 is the main crystalline phase, which is accompanied by a little Nd2Sn2O7 as the second phase. An apparent density of 6.89 g/cm3, a dielectric constant (ε r ) of 19.1, a quality factor (Q × f) of 212,000 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?68 ppm/°C were obtained when the Nd2.94/3Ba0.03(Mg0.5Sn0.5)O3 ceramics were sintered at 1,550 °C for 4 h. The temperature coefficient of resonant frequency (τ f ) increased from ?68 to +55 ppm/°C as y increased from 0 to 0.7 when the (1 ? y)Nd2.94/3Ba0.03(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were sintered at 1,600 °C for 4 h. 0.4Nd2.94/3Ba0.03(Mg0.5Sn0.5)O3–0.6 Ca0.8Sr0.2TiO3 ceramic that was sintered at 1,600 °C for 4 h had a τ f of ?7 ppm/°C.  相似文献   

5.
6.
7.
The crystalline structure and dielectric properties of BaZr x Ti1−x O3 ceramics with x = 0.05, 0.10, 0.15, and 0.20 were investigated. As zirconium increased, the a-axis lattice constant gradually increased, however, the c-axis lattice constant and c/a ratio gradually decreased. When x = 0.20, the crystal structures of the BZT ceramics are very close to cubic, different from the tetragonal structure when x < 0.20. The temperature dependence of the dielectric constant was studied and an enhanced diffuse phase transition behavior is found to be caused by the increased Zr content. The decreases of coercive electric field and remanent polarization were the result of increase of Zr/Ti ratio in BaZr x Ti1−x O3.  相似文献   

8.
9.
10.
11.
The effect of B2O3 on the microstructure and microwave dielectric properties of the 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system were investigated with a view to their use in microwave devices. A B2O3-doped 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system was prepared by the conventional solid-state method. The X-ray diffraction patterns of the B2O3-doped 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system did not significantly vary with sintering temperature. A 1.25 wt% B2O3-doped 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic system that was sintered at 1,525 °C for 4 h had a dielectric constant of 38.0, a quality factor (Q × f) of 68,600 GHz, and a temperature coefficient of resonant frequency of 2 ppm/°C.  相似文献   

12.
Microwave dielectric ceramics with the composition of (1?x) LiZn0.5Ti1.5O4 (LZT)–xTiO2 (0.05 ≤ x ≤ 0.4) were prepared by a solid-state reaction route. XRD patterns revealed that the samples consist of LiZn0.5Ti1.5O4 and rutile TiO2, and the amount of rutile TiO2 phase increased with increasing the x values. The microwave measurements show that the dielectric properties of ceramics can be improved with increasing x values. When x = 0.1, the temperature coefficient of resonant frequency (τ f ) of 0.9LZT–0.1TiO2 ceramic can be adjusted to a near-zero value of ?1 ppm/°C, and permittivity (εr) and Q × f value are 26 and 45,000 GHz, respectively. These results indicate that 0.9LZT–0.1TiO2 ceramic can be a candidate in microwave dielectric resonators.  相似文献   

13.
Lead-free ceramics based on bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT)–barium titanate (BaTiO3,BT) have been prepared by solid state reaction process. The (1?x)BNT–(x)BT (x = 0.01,0.03,0.05,0.07) ceramics were sintered at 1,150 °C for 4 h in air, show a pure perovskite structure. X-ray diffraction analysis indicates that a solid solution is formed in (1?x)BNT–(x)BT ceramics with presence of a morphotropic phase boundary (MPB) between rhombohedral and tetragonal at x = 0.07. Raman spectroscopy shows the splitting of (TO3) mode at x = 0.07 confirming the presence of MPB region. The temperature dependence dielectric study shows a diffuse phase transition with gradual decrease in phase transition temperature (Tm). The dielectric constant and diffusivity increases with increase in BT content and is maximum at the MPB region. With the increase in BT content the maximum breakdown field increases, accordingly the coercive field (Ec) and remnant polarization (Pr) increases. The piezoelectric constant of (1 ? x)BNT–(x)BT ceramics increases with increase in BT content and maximum at x = 0.07, which is the MPB region. The BNT–BT system is expected to be a new and promising candidate for lead-free dielectric and piezoelectric material.  相似文献   

14.
The (1 ? x)K0.5Na0.5NbO3 ? x(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (KNN–BCTZ) lead-free ceramics were fabricated by conventional solid-state sintering technique. The microstructure and electrical properties of the ceramics were investigated. The X-ray diffraction analysis revealed that the ceramics formed a single phase perovskite solid solutions with the symmetry of orthorhombic at x < 0.03. The crystal phase of the ceramics changed from orthorhombic phase to pseudocubic phase when x > 0.04. The coexistence of orthorhombic and pseudocubic (tetragonal) phases was observed near room temperature when 0.03 ≤ x ≤ 0.04. The grains grew up obviously when 2 mol% BCTZ was added, but the grain size was found to reduce gradually with further increasing BCTZ content. The T C and T O-T decreased with the increasing BCTZ content. The ferroelectric and piezoelectric properties were abruptly degraded as x ≥ 0.05. Optimum properties (d 33 = 136 pC/N, k p = 27 %, k t = 26.5 %, Q m = 25, P r = 14.67 μC/cm2, E c = 11.23 kV/cm, T C = 347 °C, $\varepsilon_{33}^{\text{T}} /\varepsilon_{0} = 8 6 1. 5$ ε 33 T / ε 0 = 8 6 1.5 , tan δ = 0.04) were obtained for the ceramica with x = 0.03.  相似文献   

15.
Low-temperature-sintered Ba3(VO4)2–CaWO4 composite ceramics were prepared by cofiring mixtures of pure-phase Ba3(VO4)2 and CaWO4. The thermo-mechanical analysis revealed that the CaWO4 in the composite ceramic can significantly promote the densification process and lower the sintering temperature to ~900 °C. The X-ray diffraction results indicated that Ba3(VO4)2 and CaWO4 phases coexist in the sintered ceramics, and no secondary phases can be detected in the composite, implying the good chemical compatibility between the two phases. The near-zero temperature coefficients of the resonant frequency (τf) could be achieved by adjusting the relative content of the two phases owing to their opposite τf values. The composite ceramics with 60 wt% CaWO4 sintered at 900 °C exhibited desirable microwave dielectric properties of the quality factor Q × f ~ 37,000 GHz, dielectric constant εr ~ 12, and τf ~ ?1.4 ppm/°C.  相似文献   

16.
Ba0.5Sr0.5TiO3–MgO–Mg2TiO4 composite ceramics were prepared by a solid-state reaction method, and the dielectric tunable properties were investigated. It is observed that the addition of MgO–Mg2TiO4 into the Ba0.5Sr0.5TiO3 forms ferroelectric (Ba0.5Sr0.5TiO3)–dielectric (Mg2TiO4–MgO) composites. Increasing Mg2TiO4 content causes an increase of Curie temperature Tc towards room temperature and a decrease of dielectric constant peak εmax. The dielectric constant and loss tangent of Ba0.5Sr0.5TiO3–MgO–Mg2TiO4 composites have been reduced and the overall tunability is maintained at a sufficiently high level. With the increase of Mg2TiO4 content and the decrease of MgO content, the dielectric constant and tunability of Ba0.5Sr0.5TiO3–MgO–Mg2TiO4 composite ceramics increase and the Q × f values decrease. Ba0.5Sr0.5TiO3–Mg2TiO4–MgO composites have dielectric constant of 123.0–156.5 and tunability of 14.4–28.5 % at 10 kHz under 3.9 kV/mm, indicating that they are promising candidate materials for tunable microwave applications requiring a low dielectric constant.  相似文献   

17.
The widely used piezoelectric Pb(Zr1−x Ti x )O3 ceramics have been known to have Zr4+ and Ti4+ randomly distributed on the B-site lattice in the ABO3 perovskite structure. In this study, we attempted to develop long range 1:1 B-site cation order by forming the solid solution of (1 − x)Pb(Mg1/2W1/2)O3 − xPb(Zr0.5Ti0.5)O3 (x ≥ 0.60). High temperature X-ray diffraction tests indicate that the cation order is embedded in the structural order. The solid solution ceramics appear to have a non-cubic paraelectric phase above their Curie temperatures. The competition between the antiferroelectric order in Pb(Mg1/2W1/2)O3 and the ferroelectric order in Pb(Zr0.5Ti0.5)O3 leads to the relaxor ferroelectric behavior in the solid solution. Since the temperature at dielectric maximum, T m, is significantly above room temperature, regular polarization versus electric field hysteresis loops are recorded in these compositions at room temperature. In addition, these ceramics show very good piezoelectric properties.  相似文献   

18.
19.
The xCaTiO3–(1 ? x)Sm0.9Nd0.1AlO3 (0.25 ≤ x ≤ 0.85) microwave dielectric ceramics were prepared by conventional solid state reaction method. The phase structures were characterized by X-ray diffraction, scanning electron microscope and Raman spectra. Solid solutions with the orthorhombic perovskite structure with octahedral tilting were formed from the x range of 0.25 to 0.85. Microwave dielectric properties of xCaTiO3–(1 ? x)Sm0.9Nd0.1AlO3 ceramics were investigated systematically. The optimum property of the ceramics was obtained for x = 0.65 sintered at 1,415 °C for 3 h: relative permittivity εr = 39.70, Q × f = 50,012 GHz, τ f  = ?6.8 ppm/°C. xCaTiO3–(1 ? x)Sm0.9Nd0.1AlO3 ceramics provide a new promising material for application in the microwave technology with relative permittivity lying within the range from 39 to 44, high quality factor and near-zero τ f .  相似文献   

20.
Lead-free 0.5Ba(ZrxTi1?x)O3–0.5(Ba0.75Ca0.25)TiO3 (x = 0.25, 0.30, 0.35, 0.40) ceramics have been synthesized by a conventional solid state sintering method. The room temperature ferroelectric and electrostrictive properties of these ceramics were studied. Based on the measured properties, these ceramics showed a typical relaxor behavior. The Curie temperature of BZT–BCT ceramics decreases with increasing the Zr content. The largest electrostrictive strain and electrostrictive coefficient are founded in BZT–BCT ceramic with x = 0.25, the value is 0.16 % and 0.079 m4 C?2, respectively. The polarization, electrostrictive strain and electrostrictive coefficient (Q 11) decrease with increase in Zr concentration. For samples with low Curie temperature, which have large room temperature dielectric constant (ε), electrostrictive coefficient increases (Q 11) is smaller. Because doping can disrupt the long range cation order, and electrostrictive (Q 11) coefficient increases with cation order from disordered, through partially-ordered, simple relaxor and then ordered perovskites, ferroelectrics with a disordered structure have a huge permittivity, but a small electrostrictive coefficient (Q 11).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号