首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aimed at the fabrication of lightweight and high performance nanocomposite fibers. Polypropylene/multiwalled carbon nanotubes (PP/MWCNTs) nanocomposite fibers (0–5 wt% of MWCNTs) were prepared via melt spinning process. The MWCNTs were dispersed in the dispersing agent before mixing with PP powder. After mixing, the dispersing agent was removed. Then the nanocomposites were spun into fibers. The fibers were spun and stretched with 7.5 draw ratios. Crystallization behavior and thermal properties of PP/MWCNTs nanocomposite fibers were studied using the differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA). The DSC curves of PP/MWCNTs nanocomposite fibers showed the crystallization peak at a temperature higher than that of neat PP fibers. These results revealed that the MWCNTs acted as nucleating sites for PP crystallization. The additions of MWCNTs into PP leaded to an increase in both crystallization temperature and crystallization enthalpy. However, no significant changes in the melting temperatures of the PP nanocomposites were detected. Degradation temperature of samples obtained from the TGA curves showed increase thermal degradation behavior for the PP/MWCNTs with the content of MWCNTs. It was found that the increase of tensile strength and modulus corresponded well with the increase of crystallinity of the composite fibers.  相似文献   

2.
This research was accomplished to examine the mechanical, morphological and crystallization kinetics study of polyethylene/silver nanoparticles (Ag-NPs) nanocomposite films. In this research, low-density polyethylene (LDPE) nanocomposite films were prepared containing Ag-NPs using maleic-anhydride-grafted low-density polyethylene (LDPE-g-MAH) as a compatibilizer by the melt mixing process. From mechanical property evaluation, it is revealed that the LDPE/LDPE-g-MAH/Ag-NPs nanocomposite films showed decreased tensile strength as compared with virgin LDPE matrix. Thermal characteristics of the prepared virgin LDPE and its nanocomposite films were studied by differential scanning calorimetry (DSC). Comprehensive analysis of different kinetic models such as the Avrami and Mo model on non-isothermal crystallization kinetics was performed in order to correlate the rate of crystallization and its various kinetic parameters. Further, the macrokinetic equation as proposed by Malkin has been applied to describe the kinetics of crystallization in the light of the Avrami equation. Concerning virgin LDPE and Ag-NP-reinforced LDPE, the former shows primary crystallization, whereas the later exhibits both primary and secondary crystallization with varying Avrami exponents. Kinetic parameters are recognized, and confirm the influence of Ag-NPs on crystallization kinetics. X-ray diffraction spectroscopy and transmission electron microscopic analysis of the nanocomposite films were conducted to verify the dispersion of inorganic filler particles in the resulting hybrids.  相似文献   

3.
A multi-performance MWCNT-reinforced chitosan nanocomposite was fabricated by two methods: a freeze-drying process associated with the sublimation and compression (SAC) method; and the casting-evaporation (CE) method. We obtained ordered and multilayered structures with limited porosity, and well-dispersed MWCNT structures of the chitosan nanocomposite, especially with the SAC method. In the case of the nanocomposite films prepared by the CE method, the mechanical strength and elongation were significantly increased by up to about 40% compared with the pure chitosan films. On the other hand, the ordered and porous multilayered pure chitosan films prepared by the SAC method showed significantly lower tensile strength and elongation compared to the pure solid chitosan films. However, the relative enhancement of the mechanical properties of multilayered MWCNT/chitosan nanocomposites with porosity was higher, especially in terms of the elongation, which showed a twofold improvement in strain. The relaxed bond, which could be a relatively strong hydrogen bond, between the functional groups in the chitosan chains and the functionalized surface of the MWCNTs might be stretched under stress, thereby improving the ductility of the multilayered nanocomposite films. In addition, the viscoplastic behavior of the films by the CE method could become more active with increasing strain rate. Interestingly, ordered and porous pure chitosan films did not reveal the viscoplastic behavior; it rather presented strain softening and viscoelastic characteristics. However, the interaction between the chitosan chains and the surface-modified MWCNTs could regenerate viscoplasticity of the chitosan films.  相似文献   

4.
Multiwall carbon nanotubes (MWCNTs)/nickel oxide (NiO) nanocomposites were successfully prepared by a sol–gel process and coated on an aluminium substrate. The MWCNTs were chemically functionalized and then added into NiO alcogels, and magnetic stirred for homogeneous dispersion into the NiO matrix solution. The morphology of the resulting nanocomposite thin films showed that the MWCNTs were embedded in the NiO nano-particle matrix, while HRTEM confirmed that the MWCNTs were surrounded by the NiO nano-particles. Raman spectra for functionalized MWCNTs displayed a red shift from the pristine MWCNTs suggesting successful purification/functionalization. The spectrum for the MWCNTs/NiO nanocomposite indicated the presence of both the TO and LO phonons of NiO, and the D and G bands of the MWCNTs. Red and blue shifts of the NiO phonons and the MWCNT phonons suggested that the vibrational properties of both materials were changed to form new nanocomposite vibrational properties. Despite unoptimized layer thickness and composition, the solar absorptance of the functionalized MWCNTs/NiO nanocomposite films was 0.84 (for a single layer). The thermal emittance at 100 °C was approximately 0.2. These results suggest that MWCNTs/NiO nanocomposite materials are suitable for solar thermal applications.  相似文献   

5.
In this work, the multi-walled carbon nanotubes (MWCNTs) cores were coated with inorganic BaTiO3 (denoted as BaTiO3@MWCNTs) via solvent-thermal method. Then, BaTiO3@MWCNTs/polyarylene ether nitriles (PEN) nanocomposite films embedded with core/shell BaTiO3@MWCNTs nanotubes were successfully prepared by solution-casting method. Pure PEN film, MWCNTs/PEN and BaTiO3/PEN films were prepared for comparison. The micromorphology, thermal, and dielectric properties of the nanocomposite films were investigated. All the nanocomposite films exhibited excellent thermal stability endowed by PEN matrix. Interestingly, it was found that core/shell BaTiO3@MWCNTs exhibited synergistic enhancement of dielectric constant of BaTiO3@MWCNTs/PEN nanocomposite films.  相似文献   

6.
A New approach is introduced to incorporate multi-walled carbon nanotubes (MWCNTs) in cementitious materials. The MWCNTs are dispersed in styrene butadiene rubber (SBR) matrix before mixing the matrix with cement. Surfactants have been successfully applied to enhance the dispersion and functionalization of MWCNTs in SBR. The significance of using this MWCNTs–SBR nanocomposite on the mechanical characteristics including compressive and tensile strengths and microstructural features of latex modified mortar (LMM) were examined. Subsequently, the significance of the functionalized MWCNTs on surface chemistry, microstructure and thermal stability of SBR were characterized. MWCNTs were found to be a useful additive for enhancing the mechanical response and thermal stability of SBR. MWCNTs–SBR nanocomposite was observed to be able to bridge micro-cracks in the LMM which helped enhancing its mechanical properties. The ability of MWCNTs to enhance the mechanical response of SBR polymer matrix might be attributed to chemical bond that functionalized MWCNTs can establish with the SBR polymer matrix. The enhanced MWCNTs–SBR nanocomposite gave rise to improved microstructural features of the LMM. Microstructural investigations showed MWCNTs were well dispersed in and bonded to the SBR matrix.  相似文献   

7.
将改性的纳米蒙脱土(MMT)和官能化的多壁碳纳米管(MWCNTs)进行复合,然后负载TiCl4催化组分,制备出纳米载体Ziegler-Natta催化剂,最后进行乙烯原位聚合得到含有多维纳米材料的聚乙烯基复合材料。通过调控纳米载体中两种材料的组成,研究蒙脱土/碳纳米管组成对纳米复合材料性能的影响。结果表明:纳米蒙脱土、改性碳纳米管复合作为催化剂的载体,能够得到高活性的乙烯聚合催化剂。两种纳米材料组成的改变,会影响聚乙烯复合材料的力学性能。当多壁碳纳米管与蒙脱土比例为1∶1时,所得到的复合材料的拉伸强度为38.7MPa。  相似文献   

8.
This communication describes the preparation, characterization and properties of biodegradable poly(butylene succinate) (PBS)/multi-walled carbon nanotubes (MWCNTs) nanocomposite. Nanocomposite was prepared by melt-blending in a batch mixer and the amount of MWCNTs loading was 3 wt%. State of dispersion-distribution of the MWCNTs in the PBS matrix was examined by scanning and transmission electron microscopic observations that revealed homogeneous distribution of stacked MWCNTs in PBS matrix. The investigation of the thermomechanical behavior was performed by dynamic mechanical thermal analysis. Results demonstrated substantial enhancement in the mechanical properties of PBS, for example, at room temperature, storage flexural modulus increased from 0.64 GPa for pure PBS to 1.2 GPa for the nanocomposite, an increase of about 88% in the value of the elastic modulus. The tensile modulus and thermal stability of PBS were moderately improved after nanocomposite preparation with 3 wt% of MWCNTs, while electrical conductivity of neat PBS dramatically increased after nanocomposite formation. For example, the in plane conductivity increased from 5.8 x 10(-9) S/cm for neat PBS to 4.4 x 10(-3) for nanocomposite, an increase of 10(6) fold in value of the electrical conductivity.  相似文献   

9.
Multiwalled carbon nanotubes (MWCNTs) are considered to be the ideal reinforcements for biorelated applications on account of their remarkable structural, mechanical and thermal properties. However, before MWCNTs can be incorporated into new and existing biomedical devices, their toxicity and biocompatibility need to be investigated thoroughly. In this study, regenerated silk fibroin/MWCNT nanocomposite films were prepared using a solvent system with pre-dispersed MWCNTs. Their biocompatibility was examined in vitro using human bone marrow stem cells. Scanning electron microscopy and a WST-1 assay demonstrated that the silk fibroin/MWCN film supported BMSC attachment and growth over 7 days in culture similar to the silk fibroin only film.  相似文献   

10.
Polypyrrole/multiwall carbon nanotube (PPy/MWCNT) nanocomposites were successfully synthesized by electropolymerization of MWCNT-dispersed pyrrole solution on the surface of copper electrodes. The obtained nanocomposites were characterized with scanning electron microscopy (SEM), linear sweep voltammetry (LSV) and thermal gravimetric analysis (TGA). Polypyrrole structures which embraced the MWCNTs led to the formation of nanocomposite striated parallel walls. MWCNTs acted as appropriate substrates for electrodeposition of polypyrrole particulate structures and high yield synthesis of PPy was observed on them. Smooth PPy/MWCNT nanocomposite films were obtained on Cu electrodes by decreasing the potential scan rate. Thermogravimetric analysis showed that MWCNTs increased the thermal stability of polypyrrole.  相似文献   

11.
碳纳米管/PLA复合材料制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用溶液共混法制备纯化和酸化碳纳米管(CNTs)/PLA(聚乳酸)复合膜, 并对CNTs的分散性以及材料的结晶形态、 电性能和降解性能进行了研究。结果表明, 通过SEM观察到经过酸化处理的CNTs能较好地分散在PLA基体中; 在偏光显微镜下能观察到CNTs起到成核剂的作用, 明显细化了晶粒; 加入少量的酸化CNTs能够提高CNTs/PLA复合材料导电性, 体积电阻率下降了7个数量级; 同时, 酸化CNTs能够提高CNTs/PLA复合材料的降解性。  相似文献   

12.

PMMA polymer doped by multi-walled carbon nanotubes (MWCNTs) has attracted much attention as promising materials for photovoltaic and optoelectronic applications. The undoped poly(methyl methacrylate) (PMMA) and PMMA/MWCNTs nanocomposite films doped with varying concentrations of Zirconium dioxide nanoparticles (ZrO2 NPs) are synthesized using the casting method. It is found that the transmittance (\(T\%\)) decreases significantly as wt%?=?5% of MWCNTs is injected into PMMA matrix. In addition, increasing the concentration of ZrO2 NPs into PMMA- MWCNTs nanocomposite thin films results in a further reduction of the transmittance and a further increase of the reflectance (\(R\%\)). The optical band gap energy (Eg) of PMMA-MWCNTs/ZrO2 NPs decreases from 4.063 \(eV\) to 3.845 \(eV\) upon injection of 5% of MWCNTs and gradually increasing the ZrO2 concentration in PMMA matrix. Furthermore, other essential optical parameters are estimated using different classical models such as Drude, Spitzer-Fan, Sellmeier, and Wemple–DiDomenico (WDD). Interestingly, thermal stability of PMMA-MWCNTs nanocomposite films is enhanced dramatically upon increasing the content of ZrO2 NPs. The synthesized nanocomposite thin films could be potential candidates for fabrication realistic scaled optoelectronic devices.

  相似文献   

13.
Poly (methyl methacrylate) (PMMA) bone cement—multi walled carbon nanotube (MWCNT) nanocomposites with weight loadings ranging from 0.1 to 1.0 wt% were prepared. The MWCNTs investigated were unfunctionalised, carboxyl and amine functionalised MWCNTs. Mechanical properties of the resultant nanocomposite cements were characterised as per international standards for acrylic resin cements. These mechanical properties were influenced by the type and wt% loading of MWCNT used. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect and hindering crack propagation. MWCNTs agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the weight fraction and functionality of MWCNTs incorporated into the cement.  相似文献   

14.
目的研究纳米SiO2对可生物降解聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(P34HB)包装膜结晶行为和力学性能的影响。方法采用溶液浇铸法制备SiO_2/P34HB纳米复合薄膜,利用红外光谱仪(FTIR)、扫描电镜(SEM)、正置热台显微镜(POM)、差示扫描量热仪(DSC)和万能力学试验机等研究纳米SiO_2对P34HB结构、结晶性和力学性能等的影响。结果纳米SiO_2在P34HB中起到异相成核的作用,SiO2/P34HB复合膜的结晶速率和结晶度得到明显改善。相比P34HB包装膜,当纳米SiO_2质量分数为2%时,SiO_2/P34HB复合膜的弹性模量和拉伸强度分别提高了72.7%和60.9%。结论获得了纳米SiO2改善可生物降解聚(3-羟基丁酸酯-co-4-羟基丁酸酯)包装膜结晶度和力学性能的最佳掺杂比例参数。  相似文献   

15.
CEC/ATO and CEC/BTO/ATO nanocomposite films were fabricated by introducing barium titanate (BTO) and antimony tin oxide (ATO) in cyanoethyl cellulose (CEC) via simple solution blending technique. The morphology, microstructure, thermal stability, mechanical, optical and dielectric properties of the nanocomposite films were investigated. The results indicated that CEC/BTO/ATO nanocomposite films possessed better dielectric property and mechanical property compared with CEC/ATO nanocomposite films. This could be ascribed to the homogeneous dispersion of ATO in CEC matrix due to the introduction of BTO. The nanocomposite films with only ATO nanoparticles had a certain optical transmissibility. In addition, all the nanocomposite films possessed better thermal stability than CEC polymer.  相似文献   

16.
通过静电纺丝法制备出多壁碳纳米管(MWCNTs)增强聚己内酯(PCL)超细复合纤维膜。用扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱仪、差示扫描量热仪(DSC)和X射线衍射仪(XRD)对MWCNTs/PCL超细复合纤维进行表征,并进行了拉伸测试。结果表明,MWCNTs分散于PCL纤维中,MWCNTs的加入降低了PCL的结晶度。当PCL中MWCNTs的含量为0.5 wt%时,其结晶度最低,但此时MWCNTs/PCL超细复合纤维具有最好的力学性能。  相似文献   

17.
Multi-walled carbon nanotube (MWCNT)/polyetherimide (PEI) nanocomposite films have been prepared by casting and imidization. A homogeneous dispersion of MWCNTs throughout the PEI matrix is observed by scanning electron microscopy of fracture surfaces, which shows not only a fine dispersion of MWCNTs but also strong interfacial adhesion with the matrix, as evidenced by the presence of many broken but strongly embedded carbon nanotubes (CNTs) in the matrix and by the absence of debonding of CNTs from the matrix. Differential scanning calorimetry and dynamic mechanical analysis show that the glass transition temperature of PEI increases by about 10 °C by the addition of 1 wt% MWCNTs. Mechanical testing shows that for the addition of 1 wt% MWCNTs, the elastic moduli of the nanocomposites are significantly improved by about 250% while the tensile strength is comparable to that of the matrix. This improvement is due to the strong interfacial interaction between the MWCNTs and the PEI matrix which favors stress transfer from the polymer to the CNTs.  相似文献   

18.
Carbon nanotube-based nanocomposites of chitosan were successfully prepared by a simple solution-evaporation method. Multiwalled carbon nanotubes (MWCNTs) were treated by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) in water before mixed with a chitosan solution to improve the dispersion of MWCNTs and interfacial compatibility between MWCNTs and chitosan. The morphological and mechanical properties of the prepared PEDOT-PSS/MWCNT/chitosan nanocomposites have been characterized with field emission scanning electron microscopy (FESEM) and tensile tests. MWCNTs were observed to be homogeneously dispersed throughout the chitosan matrix. As compared with the neat chitosan, the tensile strength and modulus of the nanocomposite were greatly improved by about 61% and 34%, respectively, with incorporation of only 0.5 wt.% of MWCNTs into the chitosan matrix. The comparison of mechanical properties for PEDOT-PSS/MWCNT/chitosan and pristine MWCNT/chitosan nanocomposites has been made. The hardness of the nanocomposites was also evaluated by nanoindentation.  相似文献   

19.

Incorporation of rigid nanoparticles is the most effective means of improving polymer properties. Montmorillonite (MMT) and multi-walled carbon nanotubes (MWCNTs) are legendary in this field for their individual exceptional properties. A synergistic phenomenon is induced between these two particles when they are simultaneously incorporated into polymers. At a definite nanofillers concentration, called the percolation threshold, there is a sudden change in nanocomposite properties due to the formation of a 3D-structured network of the nanoparticles within the matrix. In this work, the properties of poly(lactic acid) (PLA) nanocomposites filled with different fractions of MMT/MWCNTs hybrid (0.5–2.0 wt%) were analyzed. In particular, the percolation threshold of the MMT/MWCNTs hybrid was uniquely identified by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical thermal analysis. The structural studies by X-ray diffraction and Fourier-transform infrared spectroscopy were also associated with the percolation threshold of MMT/MWCNTs in PLA. At 1.0 wt% MMT/MWCNTs concentration, the complete exfoliation of the particles was maintained, and the thermal characteristics such as glass transition, crystallization and melting temperatures reached their plateau at this hybrid concentration. Moreover, the thermal degradation and viscoelastic parameters showed their peak values at this critical point, which is correlated with the formation of the percolation threshold within the matrix. The morphological studies confirmed the homogeneous dispersion of MMT/MWCNTs in PLA up to a concentration of 1.0 wt%. At 2.0 wt% MMT/MWCNTs, few aggregations occurred in the PLA-based composite, confirming that the percolation threshold was formed at a lower concentration of MMT/MWCNTs nanoparticles.

  相似文献   

20.
采用超声波分散法制备了聚偏氟乙烯(PVDF)/多壁碳纳米管(MWCNT)复合材料。利用扫描电子显微镜、差示扫描量热法和傅立叶变换红外光谱等方法研究了复合材料的形态,考察了MWCNT用量对复合材料结晶行为和力学性能的影响。结果表明,通过超声处理,PVDF和MWCNTs之间产生了相互作用,复合体以球状的形式存在。MWCNTs的引入导致具有压电性的β相形成和屈服强度的提高。根据实验结果,对PVDF/MWCNT复合球体和β相的形成机理提出了可能的解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号