首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on the photoluminescence results of Dy3+ or Tb3+ ions in Ca3Ln(Y,Gd)(VO4)3 powder phosphors. Emission spectra of Dy3+:Ca3Ln(Y,Gd)(VO4)3 powder phosphors have shown blue emissions (4F9/2 → 6H15/2) at 481 nm, yellow emissions (4F9/2 → 6H13/2) at 572 nm and a weak red emissions (4F9/2 → 6H11/2) at 661 nm upon excitation with λexci = 310 nm (6H15/2 → 4L19/2). Similarly photoluminescence spectra of Tb3+:Ca3Ln(Y,Gd)(VO4)3 have shown green emissions (5D4 → 7F5) at 545 nm with λexci = 312 nm. For these phosphors XRD, FTIR, SEM and EDAX measurements have also been carried out.  相似文献   

2.
Er3+ doped SrF2–SiO2 transparent glass ceramics were prepared by sol–gel method and heat treatment. The decomposition of Sr2+–CF3COO and the formation of SrF2 nano-crystals were found to proceed synchronously in the xerogel. After crystallization of the xerogel, SrF2 nano-crystals with 8–10 nm in size distributed homogenously among the glassy matrix, and the microstructure of the glass ceramic was stable under and at the temperature of 800 °C probably due to interfacial interaction between nano-crystals and glassy matrix. When heat-treated at 800 °C, the chemically bonded water in the sample was eliminated, resulting in the appearance of the visible luminescence bands of 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions.  相似文献   

3.
Up-converting yttrium oxysulfide nanomaterials doped with ytterbium and erbium (Y2O2S:Yb3+,Er3+) were prepared with the flux method. The precursor oxide materials were prepared using the combustion synthesis. The morphology of the oxysulfides was characterized with transmission electron microscopy (TEM). The particle size distribution was 10–110 nm, depending on the heating temperature. According to the X-ray powder diffraction (XPD), the crystal structure was found hexagonal and the particle sizes estimated with the Scherrer equation agreeded with the TEM images. Upon the 970 nm infrared (IR) laser excitation, the materials yield moderate green ((2H11/2, 4S3/2) → 4I15/2 transition) and strong red (4F9/2 → 4I15/2) luminescence. The green luminescence was enhanced with respect to the red one by an increase in both the crystallite size and erbium concentration due to the cross-relaxation (CR) processes. The most intense up-conversion luminescence was achieved with xYb and xEr equal to 0.10 and 0.005, respectively. Above these concentrations, concentration quenching occurred.  相似文献   

4.
The Y2O2S:Eu3+,Mg2+,TiIV (xEu = 0.028, xMg = 0.086, xTi = 0.03) materials were prepared with the flux fusion method. According to X-ray powder diffraction, the materials had the hexagonal crystal structure. The emission of Y2O2S:Eu3+,Mg2+,TiIV was centered at 627 nm (λexc : 250 nm) due to the 5D0 → 7F2 transition of Eu3+. The excitation spectra (λem : 627 nm) showed broad bands at 240 and 320 nm due to the O2− → Eu3+ and S2− → Eu3+ charge transfer transitions, respectively. The latter band can also overlap with the Ti → Eu3+ energy transfer. In the excitation spectra with synchrotron radiation, in addition to the O2− → Eu3+ and S2− → Eu3+ charge transfer transitions, excitation over the band gap was observed at 4.8 eV (258 nm). The red persistent luminescence due to the 5D0 → 7F2 emission from Eu3+ residing in the regular Y3+ site of the host was ca. 10 min with 1 min fluorescent lamp irradiation. In addition, a very broad band was observed at 600 nm probably due to the Ti3+ emission.  相似文献   

5.
P. N mec  M. Frumar 《Materials Letters》2008,62(17-18):2799-2801
Dy3+ doped chalcogenide glasses from Ge–Ga–Se system were prepared and spectroscopic parameters of Dy3+ ions in these glasses were studied on the basis of Judd–Ofelt theory. We have found that the values of Judd–Ofelt intensity parameters Ωt (t = 2, 4, 6) have maximal values at the GeSe2–Ga2Se3 tie-line. Largest values of spectroscopic parameters of 1.3 µm Dy3+ transition (6F11/2, 6H9/2 → 6H15/2), localized again at the GeSe2–Ga2Se3 tie-line, confirm the importance of the stoichiometry of amorphous matrix for optical properties of doping rare-earth ions.  相似文献   

6.
Transparent and uniform tellurite–phosphate glasses were prepared and the reason why the substitution of NaPO3 for P2O5 can eliminate the coloration of tellurite–phosphate was discussed. The result of TDA indicated that introducing NaPO3 into tellurite glasses can improve thermal stability of glass hosts. The compositional dependence of absorption cross-sections of 4I13/2, 4I11/2 and 2H11/2 level, emission cross-section of 4I13/2 level, host phonon energy, up-conversion and 1.5 μm optical emission intensity as well as and quantum yield for 4I13/2 level in PTEr glasses were investigated too. By analyzing obtained data, authors believe that tellurite–phosphate glasses can be used as potential host material for developing optical amplifiers.  相似文献   

7.
The present paper brings out the results concerning the preparation and optical properties of Sm3+ and Dy3+ each ion separately in different concentrations (0.3, 0.5, 1.0 and 1.5 mol.%) and also together doped (x mol.% Dy3+ + 1.5 mol.% Sm3+): Li2O-LiF-B2O3-ZnO (where x = 0.5, 1.0 and 1.5 mol.%) glasses by a melt quenching method. Structural and thermal properties have been extensively studied for those glasses by XRD and TG/DTA. The compositional analysis has been carried out from FTIR spectral profile. Optical absorption spectral studies were also carried out. Sm3+: LBZ glasses have displayed an intense orange emission at 603 nm (4G5/2 → 6H7/2) with an excitation wavelength at 403 nm and Dy3+: LBZ glasses have shown two emissions located at 485 nm (4F9/2 → 6H15/2; blue) and 574 nm (4F9/2 → 6H13/2; yellow) with an excitation wavelength at 385 nm. Remarkably, it has been identified that the significant increase in the reddish orange emission of Sm3+ ions and diminished yellow emission pertaining to Dy3+ ions in the co-doped LBZ glass system under the excitation of 385 nm which relates to Dy3+ ions. This could be due energy transfer from Dy3+ to Sm3+. The non-radiative energy transfer from Dy3+ to Sm3+ is explained in terms of their emission spectra, donor lifetime, energy level diagram and energy transfer characteristic factors. These significantly enhanced orange emission exhibited glasses could be suggested as potential optical glasses for orange luminescence photonic devices.  相似文献   

8.
Emission properties of Ho3+ at 2.0 μm and the energy transfer mechanism between Yb3+, Er3+ and Ho3+ ions in fluorophosphate glasses are investigated. The measured emission spectra show that the 5I7 → 5I8 transition of Ho3+ upon 980 nm laser diode excitation is strong. Judd–Ofelt intensity parameters (Ωλ, λ = 2, 4, 6), spontaneous transition probability (Arad), radiative lifetime (τr), absorption cross section (σa), stimulated emission cross section (σe) and FWHM ×  for the transition of Ho3+: 5I7 → 5I8 are calculated and discussed. The obtained results show that the present Yb3+/Er3+/Ho3+ triply-doped fluorophosphate glass can be identified to be a promising material at 2.0 μm emission.  相似文献   

9.
Absorption and magnetic circular dichroism (MCD) spectra of ff transitions 6H15/2 → 6F3/2, 6F5/2, 6(F7/2 + H5/2) have been measured in cubic crystal Rb2NaDyF6 with Dy3+ ions in centrosymmetrical Oh positions. Magneto-optical activities (MOA) of the transitions (the ratio of zero moments of the MCD and absorption bands) have been obtained from the corresponding spectra. Origins of the transitions MOA have been analyzed and theoretical estimations of the MOA values have been made. It turned out, that MOA of the transitions in the centrosymmetrical crystal Rb2NaDyF6 (being allowed by odd vibrations) are noticeably larger than those in non-centrosymmetrical compounds, where ff transitions are allowed by static odd components of crystal field.  相似文献   

10.
SiO2–SrB4O7:Eu2+ glass–ceramic thin films were fabricated for possible application in near ultraviolet (NUV) emitting devices. Nano-sized SrB4O7:Eu2+ powders were prepared by a Pechini-type sol–gel method and a subsequent ball-milling treatment. The powders showed NUV emissions centered at 367 nm, upon irradiation with UV of shorter wavelengths, due to an allowed 4f65d1 → 4f7 electronic transition of Eu2+ ions. The glass–ceramic thin films were prepared by dip-coating of tetraethylorthosilicate (TEOS) solutions dispersed with the nano-sized SrB4O7:Eu2+ powders and a subsequent heat-treatment. It was found that the glass–ceramic thin films had relatively high thermal stability up to 800 °C in terms of the Eu2+ emissions. SiO2 layers surrounding SrB4O7:Eu2+ appeared to be effective for the surface passivation of the phosphor particles.  相似文献   

11.
Li2O–WO3–P2O5 glasses containing small concentrations of Ag2O from 0 to 1 mol% were prepared. A number of studies viz., chemical durability, dielectric studies (constant ′, loss tan δ, a.c. conductivity σac over a range of frequency and temperature), spectroscopic (infrared, optical absorption ESR spectra) and magnetic susceptibility studies of these glasses, have been carried out. The interesting variations observed in all these properties with the concentration of Ag+ ions have been analyzed in the light of different oxidation states and environment of tungsten ions in the glass network.  相似文献   

12.
Jun Wang  Qin Hao 《Thin solid films》2009,518(1):274-278
In this paper, two lanthanide–polyoxometalates Na9LnW10O36 (Ln=Eu, Dy, LnW10) were grafted on 400 nm amine-functionalized spherical Stöber silica. The monolayer thin films of hybrid particles were fabricated on quartz by spin-coating method. The hybrid particles and thin films obtained were characterized by IR, UV–vis spectra, scanning electron microscopy, transmission electron microscope and luminescent spectra, respectively. The hybrid particles show strong luminescence which could be seen by naked eyes. The excitation spectra of hybrid particles and thin films show both abroad ligand to metal charge band and the excitation lines of rare earth ions. The transition 5D07F0 could be seen in the emission of hybrid EuW10/SiO2 spheres and thin films, which could not be found in spectrum of EuW10 solid. It is noticed that the intensity ratio of red (5D07F2) to orange (5D07F1) of Eu3+ and the yellow to blue (4F9/26H13/2: 4F9/26H15/2) of Dy3+ in LnW10/SiO2 particles and thin films are quite different from those of LnW10 solids. The different shapes and ratios between characteristic emissions of hybrid particles and thin films indicated the various symmetry of sites occupied by Ln3+ ions.  相似文献   

13.
Vacuum ultraviolet (VUV) excitation and emission properties of Tb3+ ion doped silico-aluminate phosphor Ca1.5Y1.5Al3.5Si1.5O12:Tb3+ was studied. Upon excitation with vacuum ultraviolet (VUV) and near UV light excitation, the phosphor showed strong green-emission peaked at 545 nm corresponding to the 5D4 → 7F5 transition of Tb3+, and the highest PL intensity at 545 nm was found at a content of about 14 mol% Tb3+. The 4f–5d transition absorption of Tb3+ is in the range from 150 nm to 260 nm, and there is an energy transfer from the host to the rare earth ions. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was less than 3 μm.  相似文献   

14.
Nanocrystallites of tricobalt tetraoxide (Co3O4) have been synthesized by sol–gel process using cobalt acetate tetrahydrate, oxalic acid as precursors and ethanol as a solvent. The process comprises of gel formation, drying at 80 °C for 24 h to obtain cobalt oxalate dihydrate (α-CoC2O4·2H2O) followed by calcination at or above 400 °C for 2 h in air. These results combined with thermal analysis have been used to determine the scheme of oxide formation. The room temperature optical absorption spectra exhibits blue shift in both (i) ligand to metal (p(O2−) → eg(Co3+), 3.12 eV), and (ii) metal to metal charge transfer transitions (a) t2g(Co3+) → t2(Co2+), 1.77 eV, (b) t2(Co2+) → eg(Co3+), 0.95 eV together with the d–d transitions (0.853 and 0.56 eV) within the Co2+ tetrahedra. The temperature dependent ac electrical and dielectric properties of these nanocrystals have been studied in the frequency range 100 Hz to 15 MHz. There are two regimes distinguishing different temperature dependences of the conductivity (70–100 K and 200–300 K). The ac conductivity in both the temperature regions is explained in terms of nearest neighbor hopping (NNH) mechanism of electrons. The carrier concentration measured from the capacitance (C)–voltage (V) measurements is found to be 1.05 × 1016 m−3. The temperature dependent dc magnetic susceptibility curves under zero field cooled (ZFC) and field cooled (FC) conditions exhibit irreversibilities whose blocking temperature (TB) is centered at 35 K. The observed Néel temperature (TN  25 K) is significantly lower than the bulk Co3O4 value (TN = 40 K) possibly due to the associate finite size effects.  相似文献   

15.
Yb3+/Tm3+/Ho3+ tri-doped Gd2Mo3O9 phosphors were synthesized by the high-temperature solid-state method. Under 980 nm near-infrared excitation, the white-light emission can be observed, which is consists of the blue, green, and red UC emissions. The green and red emission at 547 nm and 660 nm originated from the transition of Ho3+ (5S2, 5F4 → 5I8 and 5F5 → 5I8) and the blue emission at 475 nm attributed to the transition of Tm3+ (5G4 → 5H6). In this experiment, we selected the optimum concentration ratio of the three rare earths for the bright white emission. The Commission internationale de L’Eclairage (CIE) coordinates for the samples were calculated, and chromaticity coordinates were very close to white light regions. We find that the calculated CIE color coordinates of the Yb3+/Tm3+/Ho3+ tri-doped Gd2Mo3O9 phosphors changed with the incident pump power from 400 mW/cm2 to 1000 mW/cm2. The upconversion luminescence mechanism of the samples was discussed on its spectral. The white light may be proved to be a candidate material for applications in various fields.  相似文献   

16.
The Ba2TiSi2O8 is a well known piezoelectric, ferroelectric and non-linear crystal. Nanocrystals of Ba2TiSi2O8 doped with 1.5 Dy3+ have been obtained by thermal treatment of a precursor glass and their optical properties have been studied. X-ray diffraction patterns and optical measurements have been carried out on the precursor glass and glass ceramic samples. The emission spectra corresponding to the Dy3+: 4F9/2 → 6H13/2 (575 nm), 4F9/2 → 6H11/2 (670 nm) and 4F9/2 → 6H9/2 (757 nm) transitions have been obtained under laser excitation at 473 nm. These measurements confirm the incorporation of the Dy3+ ions into the Ba2TiSi2O8 nanocrystals which produces an enhancement of luminescence at 575 nm. At this wavelength has been demonstrated a maximum optical amplification around 1.9 cm−1 (∼8.2 dB/cm).  相似文献   

17.
The VUV excited luminescent properties of Ce3+, Eu3+ and Tb3+ in the matrices of KMLn(PO4)2 (M2+ = Ca, Sr; Ln3+ = Y, La, Lu) were investigated. The bands at about 155 nm in the VUV–UV excitation spectra are attributed to the host lattice absorption, which indicates that the optical band gap of KMLn(PO4)2 is about 8.0 eV. Ce3+-doped samples show typical Ce3+ emission in the range of 300–450 nm, and the energy transfer from host lattice to Ce3+ is efficient. For Eu3+-doped samples, the O2−–Eu3+ CTBs are observed to be at about 228 nm except KSrLu(PO4)2:Eu3+ (247 nm). As for Tb3+-doped samples, typical 4f → 5d absorption bands in the region of 175–250 nm were observed.  相似文献   

18.
In this work the photoluminescence and excitation spectra at room temperature of the spinel-type MgGa2O4 with 0.5% and 10.0% of Mn2+ have been studied. The polycrystalline samples were synthesized by standard solid-state reaction methods at high temperature. The photoluminescence spectra exhibit green and red emissions for both samples, attributed to 4T1(4G 6A1(6S) transition of Mn2+ ion in tetrahedral and octahedral sites of oxygen, respectively. The excitation spectra exhibit features unambiguously assigned to d–d transitions of Mn2+ in those kinds of sites. From the excitation spectra and Tanabe–Sugano matrices the crystal field Dq and Racah B parameters were obtained.  相似文献   

19.
0.56GeS2–0.24Ga2S3–0.2KX(X = Cl, Br, I) chalcohalide glasses were prepared and their third-order optical non-linearities χ(3) have been studied systematically using the femtosecond time-resolved Optical Kerr Effect technique at wavelength of 800 nm. In this system, 0.56GeS2–0.24Ga2S3–0.2KCl glass shows the largest χ(3) (1.82 × 10−13 esu), but 0.56GeS2–0.24Ga2S3–0.2KBr glass has the fastest optical non-linear response time in subpicosecond domain (about 340 fs), which is due to the ultrafast distortion of the electron clouds surrounding the balanced position of Ge, Ga, S, K and Br atoms. The local hyperpolarizability determining non-linear optical response are determined by the partially ionic bonds originating from Ge(Ga)–S bonds and halogen valence bonds. They show great potential applications on the glass-based optoelectronic devices like optical switching.  相似文献   

20.
The detailed preparation process of Eu2+ and Dy3+ ion co-doped Sr3Al2O6 phosphor powders with red long afterglow by sol–gel-combustion method in the reducing atmosphere is reported. X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the effects of synthesis temperature on the crystal characteristics, morphology and luminescent properties of the as-synthesized Sr3Al2O6:Eu2+, Dy3+ phosphors. The results reveal that Sr3Al2O6 crystallizes completely when the combustion ash is sintered at 1200 °C. The excitation and the emission spectra indicate that the excitation broad-band lies chiefly in visible range and the phosphor powders emit strong light at 618 nm under the excitation of 472 nm. The light intensity and the light-lasting time of Sr3Al2O6:Eu2+, Dy3+ phosphors are increased when increasing the calcination temperatures from 1050 to 1200 °C. The afterglow of Sr3Al2O6:Eu2+, Dy3+ phosphors sintered at 1200 °C lasts for over 600 s when the excited source is cut off. The red emission mechanism is discussed according to the effect of nephelauxetic and crystal field on the 4f65d1 → 4f7 transition of the Eu2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号