首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
纳米纤维素制备方法的研究现状   总被引:5,自引:2,他引:3       下载免费PDF全文
纳米纤维素由于其生物可降解性、低密度、高机械性能和可再生性而受到广泛关注。本文主要介绍了由木材或农业/林业剩余物生产的纳米纤维素的分类及制备方法,包括制备纤维素纳米晶体的无机酸水解法和酶水解法以及有机酸水解法、固体酸水解法、离子液体法、低共熔溶剂法和美国高附加值制浆法(American value added pulping,AVAP)等新型制备方法,同时介绍了制备纤维素纳米纤丝常用的预处理法和后续机械处理法,其中预处理法主要包括氧化、酶、有机酸、高碘酸盐氧化、低共熔溶剂、离子液体和溶剂辅助等多种预处理手段。最后分析了纳米纤维素的制备方法中亟待解决的问题,并展望了纳米纤维素的广阔应用前景。  相似文献   

2.
纳米纤维素是一种新型高分子功能材料,具有独特的结构和优异的性能。本文采用加热析出法制备得到纳米纤维素(HNC)的直径为10-100 nm,XRD、FTIR、TG等测试结果表明HNC在制备过程中,纤维素晶体由I型转化为II型,但分子结构未发生变化。通过对纳米纤维素分散液进行压滤制备得到纳米纤维素膜(HNCF),其透光率为89.7%,抗拉强度为84.9 MPa,杨氏模量为4933.6 MPa。并进一步揭示了加热析出法制备纳米纤维素的机理。  相似文献   

3.
本试验以酸水解法制备的纳米豆渣纤维素为原料,采用微波辅助表面乙酰化法制备醋酸纳米纤维素,研究微波处理时间、微波处理功率、反应时间、反应温度、浓硫酸与纳米豆渣纤维素浆(含水量90%)比、醋酸酐与纳米豆渣纤维素浆糊(含水量90%)比6个因素对醋酸纳米豆渣纤维素取代度的影响。通过正交试验可确定制备醋酸纳米纤维素的最佳工艺:微波处理时间30 s,微波处理功率240 W,反应温度为50℃,反应时间3 h,浓硫酸与纳米豆渣纤维素浆(含水量90%)比为1:10(mL/g),醋酸酐与纳米豆渣纤维素浆(含水量90%)比为6:5(mL/g)。在该条件下获得的醋酸纳米纤维素取代度为0.205 0。再利用TEM(透射电镜)对产物进行表征,可得到改性后产物颗粒粒径并未发生改变。  相似文献   

4.
纳米纤维素具有高比表面积(150~250 m2/g)、大长径比、低密度(1.6 g/cm3)和优越的机械性能(弹性模量~150 GPa,高拉伸强度~7.5 GPa)等特性,在生物医学等领域有着广泛的应用。本文主要对近几年纳米纤维素基水凝胶的研究进展进行了归纳总结。首先介绍了纳米纤维素的制备方法,包括机械法、酸水解法、TEMPO (2,2,6,6-四甲基哌啶-1-氧化物自由基)氧化法和生物法;其次列举了制备纳米纤维素基水凝胶的常用交联方法,包括物理交联和化学交联;最后重点介绍了纳米纤维素基水凝胶在生物医学领域方面的应用,包括伤口敷料、组织工程和药物输送;此外,对纳米纤维素基水凝胶在生物医学领域的发展方向进行了展望。  相似文献   

5.
低共熔溶剂(DES)是由氢键供体和氢键受体混合而成的具有低熔点的混合物,作为一种绿色溶剂,DES在化学、材料、生物催化和生物质精炼等领域有着广泛的应用前景。由于DES可以使纤维素润胀,并减弱纤维素分子链之间的氢键结合,所以DES可以被应用于纳米纤维素的制备。而且DES容易回收和回用,可以使纳米纤维素的制备过程清洁、无污染。本文综述了DES法制备纳米纤维素的原理、工艺和研究进展,并讨论了DES法制备纳米纤维素需要注意的问题。  相似文献   

6.
以杨木硫酸盐法漂白浆(卡伯值17.3)为原料制备纳米纤维素。使用甲酸制备纳米纤维素,用光学显微镜观察所制备的纳米纤维素的尺寸,将其冷冻干燥后并计算得率。其次,探索添加纳米纤维素复合材料的性能。物料分析结果如下:加入甲酸的时间越长,所得的纳米纤维素得率越少。甲酸-盐酸工艺比甲酸法纳米纤维素的得率低。加入不同浓度的过氧化氢,则对所得纳米纤维素的影响不大。复合材料的拉伸应力随着纳米纤维含量呈几何增长,在纳米含量为2.5%时复合材料的强度增加了77.28%,复合材料的延展性在纳米含量为2%时达到最大,形变增加97.02%。  相似文献   

7.
纳米纤维素作为包装材料的填充成分,可以提高材料的力学性能和阻隔性能,并可改善复合材料的热学性能及降解性能.本文简要介绍了纤维素及纳米纤维素,重点阐述了纳米纤维素的制备方法(化学法、生物法和物理机械法等)及其在食品包装材料中的应用(保鲜及抗菌包装材料、活性包装材料和高阻隔包装材料等).最后,对纳米纤维素在食品包装材料领域...  相似文献   

8.
纳米纤维素因具有可再生、易改性以及优异的机械性能,在众多领域具有广阔的应用前景。植物来源的纳米纤维素主要包括纤维素纳米晶体和纤维素纳米纤维,本文主要介绍了以农副产品为原料的纤维素纳米化处理技术及其分类,包括制备纤维素纳米晶体的经典无机酸水解法以及有机酸水解法、低共熔溶剂法和离子液体法等新型制备方法。此外,还介绍了制备纤维素纳米纤维常用的预处理手段和制备方法,预处理方法包括以2,2,6,6-四甲基哌啶-1-氧自由基氧化为代表的氧化法预处理以及酶法预处理;制备方法包括高压均质、精细研磨、高强度超声和高压微射流等技术。最后,对现行纤维素纳米化处理技术中存在的问题进行综合分析,并探讨了其未来研究需求,以期为纳米纤维素的绿色高效生产提供理论参考。  相似文献   

9.
纳米纤维素增强可生物降解聚合物的研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
本文综述了纤维素纳米晶体(CNC)和纤维素纳米纤丝(CNF)在增强可生物降解聚合物中的研究进展.主要介绍了两种纳米纤维素及其制备方法,阐述了纳米纤维素的增强机理和复合材料的构筑方法,详细论述了纳米纤维素在增强聚乳酸(PLA)、热塑性淀粉(TPS)、聚己内酯(PCL)应用的研究进展.最后简要分析了纳米纤维素增强可生物降解...  相似文献   

10.
以棉纤维为原料,通过两种不同的方式制取:硫酸水解-TEMPO氧化两步法以及过硫酸铵一步氧化法制备出两种羧基化纤维素纳米晶体(Carboxylated cellulose nanocrystals,CCNs)。采用原子力显微镜(AFM)、扫描电镜(SEM)、纳米颗粒分析仪、傅里叶红外光谱(FT-IR)、X-射线衍射(XRD)、热重分析(TGA)及电导滴定法等手段对纳米纤维素的形态结构、结晶性能、化学结构、热稳定性及羧基含量进行了表征。结果表明,两种方式均制备出棒状的羧基化纳米纤维素晶体,均具备原纤维的基本化学结构和晶体结构,但所得的纳米粒子的尺寸及氧化度存在较大差异,结晶度与热稳定性的下降程度也有所不同。本对比研究可为羧基化纳米纤维素晶体的制备及应用提供一定的参考及试验依据。  相似文献   

11.
为深入分析微流控技术制备微纳米纤维素材料的研究现状,促进其在各领域应用,综述了以纤维素及纳米纤维素为原料,以微流控技术为基础,结合快速冷冻法、原位界面络合法等技术,制备纤维素及纳米纤维素微球和微胶囊、纤维长丝、薄膜、微管、水凝胶的最新研究进展;针对微流控技术制备微纳米纤维素材料存在的挑战,提出了克服材料缺陷,提升微通道...  相似文献   

12.
纤维素的研究进展   总被引:1,自引:3,他引:1       下载免费PDF全文
付时雨 《中国造纸》2019,38(6):54-64
纤维素是自然界最丰富的有机高分子,具有可再生、绿色和生物相容性,不仅在制浆造纸产品中得到大宗应用,也是化学化工的重要基础原材料。本文主要对纤维素的溶解、化学改性、纳米纤维素制备和纤维素/纳米纤维素新材料等方面的研究进展进行了综述。  相似文献   

13.
纤维素是地球上含量最为丰富的天然有机聚合物。纳米纤维素一般以高等植物、海藻及微生物由来的天然纤维素为原料,运用酸水解、机械处理、氧化处理及酶降解等纳米化工艺而制备。原料与制备技术对于产物的微观形态、化学结构与聚集态结构影响显著。纳米纤维素的理化结构赋予其独特的宏观性质以及功能特性;加之可再生、可生物降解、安全性高等优势;近年来,纳米纤维素在食品包装、食品添加剂以及功能性食品中的应用研究方兴未艾,并已取得显著进展。本文对国内外在纳米纤维素的制备工艺、结构性质及其在食品领域的应用相关研究成果进行梳理总结,以期为基于纳米纤维素的食品科技研发工作提供参考。  相似文献   

14.
为实现纳米纤维素衍生物的绿色高效制备,以过硫酸铵为氧化剂,基于机械力化学作用,在微波-水热条件下氧化降解竹浆粕得到羧基化纳米纤维素(CNC),然后与二乙烯三胺发生缩合反应,实现水相中氨基化纳米纤维素(ACNC)的一锅法合成,并对其性能进行研究。结果表明:ACNC呈棒状,直径为10~40 nm,长度为50~300 nm, 氨基的接枝率为6.29%;ACNC的晶型并未发生改变,仍为纤维素Ⅰ型,结晶度由竹浆粕的59%增加到79%;ACNC的热稳定性较竹浆粕并未显著下降,但较CNC显著提高,说明CNC表面接枝氨基后热稳定性能得到改善;该制备方法绿色高效,得到的纤维素衍生物有望在生物固化和物理性能增强方面发挥作用。  相似文献   

15.
Nanocellulose, a kind of cellulose with nanometer sizes, has drawn great interest in the pulp and paper industry due to its unique structure and excellent performance. It can be divided into five categories: nanocrystalline cellulose (NCC), nanofibrillated cellulose (NFC), bacterial cellulose (BC), electrospun cellulose nanofibers (ESC), and precipitation regenerated cellulose nanofibers (PRC). In this paper, we reviewed the industrialization progress of nanocellulose in China. Furthermore, we proposed that efficient and environmentally friendly preparation methods and high value utilization would be the focus of nanocellulose development.  相似文献   

16.
纤维素是自然界中含量丰富的天然聚合物之一,具有可再生、环境友好和生物相容性等特性。纳米纤维素是以纤维素为原料通过物理或化学方式制备而来。不同的制备方式对纳米纤维素的形态特征、物理化学性质产生显著的影响,使其呈现出不同的特性。纳米纤维素因具有较高的表面积和模量、两亲性、生物相容性和安全性等优异特性,在食品工业中备受关注。本文重点对近年来国内外关于农林副产品制备的纳米纤维素在食品包装、乳化稳定剂、酶固定化和基于表面增强拉曼光谱(SERS)的食品污染物的无损快速检测方面的应用进行了总结,分析了其在食品工业应用中的挑战,对今后研究进行了展望。  相似文献   

17.
概述了纳米纤维素的种类,包括微纤化纤维素、纳米纤维素晶体和细菌纳米纤维素,以及3种纳米纤维素的特性及其主要制备方法;重点介绍了纳米纤维素在食品领域的应用,主要包括其作为食品添加剂、功能性食品成分及食品包装材料等其他用途,并对其未来发展进行展望。  相似文献   

18.
People’s inclination toward medical textiles for healthy life style has created a rapidly increasing market for antimicrobial textiles, which, in turn, has stimulated intensive research and development. The aim of our study was to prepare cellulose fabrics finished by allicin-conjugated nanocellulose, whose properties were investigated by scanning electron microscopy, X-ray diffraction, and Fourier transforms infrared spectroscopy. The antibacterial ability of the treated fabrics was determined by AATCC test method 100–1993. The durability of antimicrobial activity to washing process was also evaluated. The results showed significant antibacterial activity against Staphylococcus aurous, statistically different from negative control fabric (finished by nanocellulose without allicin) (p < 0.05). The antibacterial activity after two home laundering cycles of all finished fabrics was only slightly reduced. It can be concluded that allicin-conjugated nanocellulose can be attached to cellulose textiles by a simple conjugation method to create durable antibacterial properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号