首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用TEM、EDS和EBSD等技术研究了Inconel 600合金在715℃时效过程中不同类型晶界处碳化物的结构、形貌和晶界附近Cr浓度的分布。结果表明,不同类型晶界处碳化物的结构和形貌有较大的不同:在Σ3c晶界析出的碳化物很少,在Σ3i晶界析出不规则形状的M23C6碳化物,在Σ9晶界析出较大的M23C6碳化物颗粒,在Σ27晶界随机析出粗大的M7C3碳化物颗粒。富Cr碳化物在晶界的析出使晶界附近贫铬,在相同的时效条件下晶界的Σ值越高其附近贫铬越严重。随着时效时间的延长各晶界附近贫铬区的宽度不同程度地增大,时效15 h贫铬区的深度最大,时效50 h后深度不同程度地减小。  相似文献   

2.
在不同条件下对X20Co高钴高铬型马氏体耐热钢进行热处理,用光学显微镜、扫描电镜、X射线衍射仪以及拉伸实验等手段进行表征,研究了微量Ce元素对其微观组织和力学性能的影响。结果表明,在X20Co钢的淬火过程中,添加质量分数为50×10-6 Ce元素能促进M6C型碳化物沿晶析出,阻碍晶界迁移,使奥氏体晶粒细化;在回火过程中能抑制M23C6型碳化物沿晶界聚集长大。同时,添加50×10-6 Ce元素对X20Co高钴高铬型马氏体耐热钢的室温硬度、室温强度、高温瞬时拉伸强度没有显著的影响,但是使其室温韧性、塑性和高温塑性显著改善。  相似文献   

3.
研究了热作模具钢DM的高温稳定性和热疲劳性能。结果表明,DM钢在620℃热稳保温过程中马氏体板条内的薄片状M3C型碳化物逐渐向条块状M7C3型碳化物转变,在板条的边界生成M7C3、M23C6型碳化物。DM钢的短循环周次热疲劳性能受控于位错重排和湮灭,长循环周次热疲劳性能受控于碳化物的粗化程度。DM钢中M3C、M7C3、M6C型碳化物的生成自由能分别为27765.5 J/mol、3841.5 J/mol、-7138.1 J/mol,表明在热稳保温与热疲劳试验过程中碳化物的演变机理一致,发生了M3C→M7C3→M6C类型演变。  相似文献   

4.
The effects of rapid cooling, of the order of 104? C sec?1, achieved through the laser surface alloying process, on the transformation behaviour of Fe-5% Cr, Fe-5% Ni and Fe-6% Cr-2% Ni alloys have been investigated. The solidification structures and microstructures were characterized by optical and transmission electron microscopy. The significant findings are that Fe-5% Cr alloy undergoes a massive transformation to ferrite while Fe-5% Ni and Fe-6% Cr-2% Ni alloys undergo a transformation to a structure consisting of both ferrite and martensite. The substructures of ferrite and martensite were observed to contain essentially dislocations. These alloys also exhibited two carbide precipitations namely epsilon carbide and cementite. Solidification studies revealed that cellular solidification structures were present in 5% Ni and 6% Cr-2% Ni alloys with a cell spacing of 3 Μm but no solidification structures were observed in 5% Cr alloy. The influence of nature of solute and cooling rate on solidification behaviour, transformation mode and morphology of structures have been discussed.  相似文献   

5.
针对低Cr合金钢进行轧制工艺设计,分别制备出显微带细化的1#组织和以马氏体/铁素体为特征的2#组织,在550℃、650℃、750℃对其进行高温拉伸实验。拉伸曲线和断后组织的分析结果表明,温度的升高和应变速率的减小能够促进再结晶过程,最终不但导致抗拉强度的降低,同时也减弱了组织内部滑移系统对亚结构界面运动的影响;然而具有2#两相组织的钢板其650℃的抗拉强度却比550℃的高。对组织和析出状态分析后认为,650℃变形时铁素体晶粒中大量形成的M7C3析出物显著提高了铁素体基体的强度,进而通过平衡其与回火马氏体之间的性能关系,使拉伸性能得以改善。  相似文献   

6.
High chromium white irons solidify with a substantially austenitic matrix supersaturated with chromium and carbon. The subcritical heat treatment can destabilize the austenite by precipitating chromium-rich secondary carbides and other special carbides. In the as-cast condition the eutectic carbides are (Fe,Cr)7C3 and (Fe4.3Cr2.5Mo0.1)C3. The initial secondary carbide precipitated is (Fe,Cr)23C6 after heat-treating at 853 K for 10 h. There are MoC, Fe2MoC and -carbide precipitating, and (Fe,Cr)23C6 transforms to M3C after 16 h at 853 K. The -carbide and (Fe,Cr)23C6 accomplish transformation to M3C and the matrix changes from martensitic to pearlitic after 22 h at 853 K. Thereby, in the subcritical heat treatment process, the initial secondary carbide precipitated is (Fe,Cr)23C6, followed by -carbide, MoC and Fe2MoC. In addition, there are two in situ transformations from (Fe,Cr)23C6 and -carbide to M3C carbides.  相似文献   

7.
Tungsten carbide was deposited from tungsten hexafluoride, dimethyl ether, and hydrogen using a horizontal, cold-wall reactor. The effects of substrate temperature, reactor pressure, and reagent ratio on the coating growth rate, morphology, composition, and microhardness were studied. Under most conditions, the solid deposit was primarily W3C with minor amounts of W. The tungsten carbide growth rate data fit an Arrhenius rate expression for temperatures from 425 to 550°C and had an activation energy of 24kcal/mol at 70mmHg total pressure and a WF6/DME ratio of 6.3. A variety of surface morphologies and microstructures were observed. The microhardness of the coated substrates increased with coating thickness to a maximum value of 2400kg/mm2.  相似文献   

8.
采用真空熔覆技术在45钢表面制备Ni +WC复合熔覆层并进行阶段性取样,研究镍基复合涂层的形成机制。结果表明:在45钢表面生成与基体冶金熔合、WC硬质颗粒分布均匀的Ni基复合熔覆层。整个熔覆层由4 mm厚的复合层、1 mm厚的过渡层、20 μm厚的扩散熔合区以及250 μm厚的扩散影响区组成。复合层区由WC和分解形成的富W复相碳化物包围在Ni颗粒周围组成;复合熔覆层的主要组成相有γ-Ni固溶体、Cr7C3、Ni2.9Cr0.7Fe0.36、Cr23C6、Ni3Fe、Ni3Si、Ni3B、W2C以及C等;真空熔覆过程包括:镍基合金颗粒达到熔点(900℃)前升温阶段颗粒间微烧结颈的形成、升温达到熔点(1020℃)开始的镍基合金颗粒熔融以及保温阶段(1060℃)的熔合扩散与WC颗粒微区位置的调整。  相似文献   

9.
对不同C、B含量的K417G合金进行DTA分析、等温淬火实验和950℃/235 MPa持久性能测试,并观察其组织形貌,研究了C、B含量对K417G镍基高温合金的凝固行为和高温持久性能的影响.结果 表明,在合金的凝固期间C含量影响碳化物的析出温度和初生碳化物的含量,且随着C含量的提高而提高;共晶组织的析出温度主要受B元素...  相似文献   

10.
Microstructural characterization of high-carbon ferrochromium   总被引:2,自引:0,他引:2  
《Materials Characterization》1996,36(4-5):349-356
Light optical and scanning electron microscopy techniques were used for high-carbon ferrochromium microstructural analysis. Different microstructures were observed for industrially and laboratory-produced ferroalloys. Primary carbides of M7C3 with chromium ferrite were found in the industrially produced, slowly solidified, and cooled ferroalloy, while primary M7C3 carbides accompanied a eutectic mixture of M7C3 carbides and chromium ferrite in the laboratory-melted and in the water-solidified and water-cooled materials. Different microstructural arrangements are directly related to the friability properties of this material, which characterizes its resistance to abrasion on handling and impact. In ferrochromium upgraded by carbon content reduction, the eutectic M7C3 hexagonal carbides are partly replaced by M23C6 dendritic carbides. The presence of dendritic carbides in the ferrochromium eutectic microstructure can be interpreted as a proof of a lower carbon content, raising the commercial value of the ferroalloy. The hexagonal M7C3 carbides exhibited a central hollow along the longitudinal axis, and on metallographic samples they looked like screw nuts. A model of the solidification mechanism for such crystals is proposed.  相似文献   

11.
A semi-solid processed 27 wt%Cr cast iron was studied by electron microscopy and its microstructure was related to the hardness. In the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Growth in the [0 0 1]M7C3 with planar faces of {0 2 0}M7C3 and was usually observed with an encapsulated core of austenite. Destabilisation heat treatment followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite in the semi-solid processed iron. Precipitation behaviour is comparable to that observed in the destabilisation of conventional cast iron. However, the nucleation of secondary M23C6 carbide on the eutectic M7C3 carbide was observed for the first time. Tempering after destabilisation led to further precipitation of carbide within the tempered martensite in the eutectic structure. The maximum hardness was obtained after destabilisation and tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.  相似文献   

12.
13.
The ground-state structures of Ti dichalcogenides are optimized from first principles using the full-potential linearized augmented-plane-wave method. The electronic structure and magnetization in several M1/3TiSe2 and M1/3TiTe2 (M = Cr, Mn, Fe) systems are studied in the supercell approach. Calculated exchange splitting of Cr2p3/2 core level in Cr1/3TiSe2 agrees well with that observed by X-ray photoelectron spectroscopy; calculated local magnetic moments are consistent with the magnetic susceptibility data. An evidence is given in favour of localized polaron-type states being created in MxTiSe2 systems, that accounts for an observed correlation between structure distortion, magnetic moments, and electrical conductivity data.  相似文献   

14.
Effect of plastic deformation on the formation of acicular ferrite   总被引:7,自引:0,他引:7  
The effect of plastic deformation on the transformation of austenite to acicular ferrite in a Fe–Mn–Si–C alloy steel containing non-metallic inclusions was investigated. The transformation to acicular ferrite is retarded and the final fraction of acicular ferrite is reduced in plastically deformed austenite, which is a characteristic of a displacive transformation mechanism. The increase in the chemical driving force for transformation due to large undercooling below the Bs temperature overcomes the efficacy of dislocations in preventing the growth of acicular ferrite.  相似文献   

15.
The geometry, electronic structure and the stability of the newly discovered metallo-carbohedrene Ti8C12 (met-car) has been investigated using the density functional methods. We show that the structure of Ti8C12 is a caged structure with a binding energy of 6.7 eV/atom. This unusual stability is derived from the C2 and the TiC bonds which decorate the structure. The density of states at the Fermi energy is low and these states are formed from a strong hybridization between the Ti d and the carbon sp-states. We also investigate alternate cubic structure containing Ti and C atoms and show that these fragments of the bulk carbide structure have binding energies per atom comparable to the met-cars. These structures were however not observed in original experiments but have been observed in some of the recent experiments. Conditions favoring the formation of met-cars or the cubic structures are examined.  相似文献   

16.
为研究合金元素含量对钢中贝氏体铁素体长大动力学的影响,采用Zener-Hillert和Bosze-Trivedi动力学模型,通过选取热力学和动力学参数,计算了合金成分不同的钢的片层状贝氏体铁素体长大速度.研究表明:Fe-0.59C、Fe-0.81C和Fe-0.478C-4.87Ni合金在贝氏体相变时,贝氏体铁素体长大速度可以用无分配局部平衡条件下的扩散模型很好地描述,Fe-0.69C-1.8Ni-0.8Mo合金贝氏体铁素体长大速度略慢于理论值,Fe-C-8.7Ni合金贝氏体铁素体的长大速度比理论值约慢2个数量级;合金元素含量高的钢的贝氏体铁素体长大速度无法用扩散控制模型很好地描述;结合对贝氏体相变机制的讨论,提出贝氏体相变机制可能与相变温度和钢的成分相关.  相似文献   

17.
The effect of Ce addition on the microstructure of carbon-alloyed Fe3Al-based intermetallic has been studied. Three different alloys of composition, Fe-18.5Al-3.6C, Fe-20.0Al-20C and Fe-19.2Al-3.3C-0.07Ce (in at%), were prepared by electroslag remelting process. Their microstructures were characterized using optical and scanning electron microscopies. Stereological methods were utilized to understand the observed microstructures. All the alloys exhibited a typical two-phase microstructure consisting of Fe3AlC carbides in an iron aluminide matrix. In the alloy without Ce addition, large bulky carbides were equally distributed throughout the matrix with many smaller precipitates interspersed in between. In the alloy with Ce addition, the carbide grain sizes were finer and uniformly distributed throughout the matrix. The effect of Ce addition on the carbide morphology has been explained based on the known effect of Ce in modifying carbide morphology in cast irons.  相似文献   

18.
A series of experiments was carried out to optimize the pulsed laser deposition parameters for the fabrication of high quality NiTi shape memory alloy thin films. Smooth NiTi shape memory alloy thin films were deposited at high growth rate with optimum deposition parameters based on the analysis of the relationships among the morphology of the target surface and the deposited thin film, the laser energy, the target–substrate distance, the thin film composition and its growth rate. Crystal structures and phase transformation temperatures of the annealed Ni49.7Ti50.3 thin film were characterized by using X-ray diffraction and differential scanning calorimetry, respectively. The martensitic transformation temperature of the crystallized Ni49.7Ti50.3 thin film is found to be lower than room temperature and 27°C lower than that of the NiTi target material. These results are attributed to the refined grain size of the thin film and its composition, which deviates slightly from Ni50Ti50.  相似文献   

19.
A grain boundary phenomenon observed, after metallographic polishing and etching, in a 1Cr-0.5Mo steel is shown to be due to the selective etching of the boundaries. The phenomenon is a feature only of material that has been subjected to strain-controlled fatigue cycles incorporating a dwell time at peak tensile stress (creep fatigue) and is largely confined to boundaries whose orientation is approximately normal to the direction of the principal tensile stress. The structural feature responsible has not been identified, although it has been established that it is not a physical discontinuity, such as a void cavity or a decohered carbide particle. The phenomenon develops concurrently with the precipitation of M3C and M7C3 carbides at the boundaries, which also is a feature of creep fatigue, and develops at the interface between these particles and the ferrite matrix as well as at the ferrite grain boundaries themselves. It seems to have been initiated in a very thin layer at these interfaces, perhaps in a layer only of the order of atom layers in thickness.  相似文献   

20.
The effect of different amounts of Nb and of homogenization on the ferritic stainless steels containing 17–18 wt.% Cr was investigated with scanning electron microscopy (SEM), optical microscopy, energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). It was observed that M23C6, NbC and sigma phase formed in these steels. In addition, the formation of Nb2C was observed in the sample containing 3.0 wt.% Nb. While the amount of Nb increased from 0.5 to 3.0 wt.% Nb, the microhardness of the matrix and the amount of M23C6 decreased and the toughness of the samples increased. After homogenization, the increase in the toughness of the samples containing 1.5–3.0 wt.%Nb was considerable and impressive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号