首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High efficiency, solution-processed, red emissive phosphorescent organic light-emitting diodes (PhOLEDs) have been developed. The PhOLEDs utilize bis[9-ethyl-3-(4-phenylquinolin-2-yl)-9H-carbazolato-N,C2′]iridium picolinate (Et-Cvz-PhQ)2Ir(pic) and bis[9-(2-(2-methoxyethoxy)ethyl)-3-(4-phenylquinolin-2-yl)-9H-carbazolato-N,C2′]iridium picolinate (EO-Cvz-PhQ)2Ir(pic) in a nonconjugated polymer host of PVK that contains the electron transport material of OXD-7 and the hole transport material TPD. The electroluminescence (EL) spectra of the PhOLEDs parallel those of (Et-Cvz-PhQ)2Ir(pic) and (EO-Cvz-PhQ)2Ir(pic) with maxima at 608 nm and a CIE (Commission International de l’Eclairage) coordinate of (0.62, 0.38). The red emitting PhOLEDs, based on ITO/PEDOT:PSS/PVK:OXD-7:TPD:Ir complex/cathode configuration, have a maximum external quantum efficiency of 10.6% and a luminance efficiency of 17.5 cd/A. The efficiency is significantly higher than those obtained using common solution-processed red emissive PhOLEDs.  相似文献   

2.
Thermal, electrical and spectroscopic properties have been studied for bis(3,5-di(9H-carbazol-9-yl) phenyl)diphenylsilane (SimCP2) which has exhibited high external quantum efficiency of 17.7% and power efficiency of 24.2 lm/W when it is used as host material for iridium bis(4,6-difluorophenypyridinato)picolate (FIrpic) blue emitter. They are compared with 1,3-bis (9-carbazolyl) benzene (mCP) and 3,5-bis (9-carbazolyl) tetraphenylsilane (SimCP) which have been also used as host for blue emitters. SimCP2 exhibits a highest glass transition temperature (148 °C) and is morphologically more stable. The electron and hole mobilities are higher (4.8 × 10−4 and 2.7 × 10−4 cm2 V−1 s−1, respectively, at electric field of 9 × 104 V cm−1) than those of mCP and SimCP. The zero-phonon S1 emission band is observed at 344 nm, while the T1 emission band at 412 nm, i.e., this material preserves the characteristics of wide band-gap of 3.56 eV and high T1 triplet energy of 3.01 eV. From the intensity ratio of the T1 emission to the S1 emission, it is suggested that the intersystem crossing rate is smaller for SimCP2 than for mCP and SimCP. From these results, we clarify the reasons why SimCP2 is superior to mCP and SimCP as the host material for blue phosphorescence emitter in organic light emitting diodes.  相似文献   

3.
Multi-layer small-molecule blue fluorescent organic light-emitting diode (OLED) is fabricated by blade coating. The emission layer is based on a mixed host of 1-(7-(9,9′-bianthracen-10-yl)-9,9-dioctyl-9H-fluoren-2-yl)pyrene (PT-404) and electron-transport material 2,7-Bis(diphenylphosphoryl)-9,9′ -spirobifluorene (SPPO13), and the blue guest emitter is 4-4′-(1E,1′E)-2,2′-(naphthalene-2,6-diyl)bis(ethane-2,1-diyl)bis(N,N-bis(4-hexyl- Phenyl) aniline) (Blue D). A hole-transport layer of Poly-(9, 9-dioctylfluorenyl-2, 7-diyl)-co-(4, 4-(N-(4-sec-butylphenyl)) diphenylamine) (TFB) is added on top of PEDOT: PSS anode. The electrons are blocked away from TFB by a layer of pure host emission layer of PT-404 between TFB and the mixed –host emission layer. For the device with the electron transport layer of Tris(8-hydroxyquinolinato)aluminum (Alq3) blade-coated over the emission layer the efficiency and lifetime at initial brightness of 500 cd m−2 are 7.5 cd A−1 and 150 h for Alq3/CsF/Al cathode. When the Alq3/CsF/Al is replaced by simply CsF/Al over the mixed-host emission layer the efficiency and lifetime are 6.4 cd A−1 and 300 h (2 times longer than that of the Alq3/CsF/Al cathode). The lifetime depends on the electron-hole balance tuned by the mixed-host blending ratio as well as the electron injection from the cathode. This work shows good stability is possible for all-solution-processed blue OLED.  相似文献   

4.
The lack of high-performance blue light-emitting electrochemical cells (LECs) has remained a formidable challenge for fabricating white LECs for lighting applications. Here, a ionic exciplex host is used for color-stable, efficient, and bright blue LECs by taking advantage of its facilitated carrier injection, bipolar charge-transport, and efficient energy transfer to the guest dopant. A cationic donor molecule, 1-(3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-3-methyl-1H-imidazol-3-ium hexafluorophosphate (tbuCAZ-ImMePF6), and a cationic acceptor molecule, 1-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-3-ethyl-1H-imidazol-3-ium hexafluorophosphate (TRZ-ImEtPF6), are developed to form the ionic exciplex host. The mixed film of tbuCAZ-ImMePF6 and TRZ-ImEtPF6 affords blue exciplex with fast reverse intersystem crossing and thermally activated delayed fluorescence. For the film doped with a blue-emitting iridium complex, energy is efficiently transferred from the exciplex to the complex. Host-guest LECs using the doped film as the active layer show stable blue emission color and high current efficiencies of up to 25.8 cd A−1. More importantly, they attain simultaneously high efficiency and high brightness (14.1/17.4/16.8 cd A−1 at 705/872/1680 cd m−2), which are the most efficient and bright host-guest blue LECs reported so far. The primary host-guest LEC also exhibits promising operational stability. The work reveals that the use of an ionic exciplex host is a promising avenue toward high-performance blue LECs.  相似文献   

5.
In order to obtain triplet emitters with high stability and efficiency, three homoleptic iridium(III) compounds — specifically, Ir(tpim)3 (1), Ir(mtpim)3 (2), and Ir(itpim)3 (3), where tpim = 1-([1,1′:3′,1″-terphenyl]-2′-yl)-2-(4-fluorophenyl)-1H-imidazole, mtpim = 2-(4-fluorophenyl)-1-(5′-methyl-[1,1′:3′,1″-terphenyl]-2′-yl)-1H-imidazole, and itpim = 2-(4-fluorophenyl)-1-(5′-isopropyl-[1,1′:3′,1″-terphenyl]-2′-yl)-1H-imidazole — were prepared by one-pot reaction of the corresponding phenylimidazole ligand with an Ir(I) complex as a starting material. Compounds 13 emit bright sky-blue phosphorescence with λmax = 459–463 nm and phosphorescent quantum efficiencies of 0.38–0.50. Multi-layer phosphorescent organic light-emitting diodes using compounds 13 as the triplet emitters and mCBP (3,3-di(9H-carbazol-9-yl)biphenyl) as the host have been fabricated. Compound 3 doped in the emissive layer demonstrate external quantum efficiency as high as 20.1% at 1000 cd/m2. In addition, the device based on compound 1 as an emitter shows a stable lifetime greater than 300 h at 1000 cd/m2, which is one of the best results concerning the device lifetime.  相似文献   

6.
High-efficiency blue organic light-emitting diodes were reported by adopting two novel iridium phosphors. Due to phosphoryl moiety in ancillary ligands, both complexes (dfppy)2Ir(ppp) and (dfppy)2Ir(dpp) (dyppy = 2-(2,4-difluorophenyl)pyridine, ppp = phenyl(pyridin-2-yl)phosphinate, dpp = dipyridinylphosphinate) own high electron mobility which can balance the injection and transport of carriers. Furthermore, the double light-emitting layers with TcTa (4,4′,4″-tris(carbazol-9-yl)triphenylamine) and 26DCzPPy (2,6-bis(3-(carbazol-9-yl)phenyl)pyridine) hosts broaden the exciton formation zone and suppress efficiency roll-off. The optimized double light-emitting layers devices exhibited decent performances with peak current efficiency near 50 cd/A and external quantum efficiency above 20% as well as negligible efficiency roll-off.  相似文献   

7.
A host material having acridine as a hole transport moiety, 10-(3′-(9H-carbazol-9-yl)-[1,1′-biphenyl]-3-yl)-9,9-dimethyl-9,10-dihydroacridine (CZBPAC), was explored as the host material of phenylimidazole type Ir triplet emitter to realize both high quantum efficiency and stable operational lifetime. The acridine containing CZBPAC was superior to carbazole based host material with the same backbone structure in that it can improve driving voltage, quantum efficiency and lifetime of the blue phosphorescent organic light-emitting diodes simultaneously.  相似文献   

8.
Two wide band gap functional compounds of phenylbis(4-(spiro [fluorene-9,9'-xanthen]-2-yl)phenyl)phosphine oxide (2SFOPO) and (4-(9-ethyl-9H- carbazol-3-yl)phenyl)(phenyl)(4-(spiro[fluorene-9,9′-xanthen]-2-yl)phenyl)phosphine oxide (SFOPO-CZ) were designed, synthesized and characterized. Their thermal, photophysical, electrochemical properties and device applications were further investigated to correlate the chemical structure of bipolar host materials with the electroluminescent performance for phosphorescent organic light-emitting diodes (PhOLEDs). Both of them show high thermal stability with glass transition temperatures in a range of 105–122 °C and thermal decomposition temperatures at 5% weight loss in a range of 406–494 °C. The optical band gaps of compound 2SFOPO and SFOPO-CZ in CH2Cl2 solution are 3.46 and 3.35 eV, and their triplet energy levels are 2.51 eV and 2.52 eV, respectively. The high photoluminescent quantum efficiency of emissive layer of doped green device up to 50% is obtained. Employing the developed materials, efficient green and red PhOLED in simple device configurations have been demonstrated. As a result, the green PhOLEDs of compound SFOPO-CZ doped with tris(2-phenylpyridine) iridium shows electroluminescent performance with a maximum current efficiency (CEmax) of 52.83 cd A−1, maximum luminance of 34,604 cd/m2, maximum power efficiency (PEmax) of 39.50 lm W−1 and maximum external quantum efficiency (EQEmax) of 14.1%. The red PhOLED hosted by compound 2SFOPO with bis(2-phenylpyridine)(acetylacetonato) iridium(III) as the guest exhibits a CEmax of 20.99 cd A−1, maximum luminance of 33,032 cd/m2, PEmax of 20.72 lm W−1 and EQEmax of 14.0%. Compound SFOPO-CZ exhibits better green device performance, while compound 2SFOPO shows better red device performance in PhOLEDs.  相似文献   

9.
Solution-processed small-molecule white organic light-emitting diodes (WOLEDs) were fabricated with a co-host of hole-transporter 4,4′,4″-Tris(carbazol-9-yl)triphenylamine (TCTA) and electron-transporter 2,7-Bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13). By doping 15 wt% FIrpic or F3Irpic and 0.5 wt% Ir(MDQ)2(acac) in to the TCTA/SPPO13 host, highly efficient white OLEDs have been achieved which exhibit nearly identical emission spectra at different luminance. The F3Irpic and Ir(MDQ)2(acac)-based WOLED shows maximum efficiencies of 40.9 cd/A, 36.7 lm/W and 16.9%, and even high efficiencies of 30.1 cd/A and 12.3% at the practical luminance of 1000 cd/m2, which are among the highest efficiencies of the solution-processed small-molecule WOLEDs. These results demonstrate a convenient way to realize solution-processed WOLEDs with high efficiency and high spectral stability through full small-molecule materials system.  相似文献   

10.
Four new host/hole-transporting materials, namely 4,4′,4″,4‴-(adamantane-1,3,5,7-tetrayl)tetrakis(N,N-diphenylaniline) (4TPA-Ad, 1),4,4′,4″,4‴-(adamantane-1,3,5,7-tetrayl)tetrakis(N,N-di-p-tolylaniline) (4MTPA-Ad, 2), 1,3,5,7-tetrakis(4-(9H-carbazol-9-yl)phenyl)adamantane (4Cz-Ad, 3) and 1,3,5,7-tetrakis(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)adamantane (4tBuCz-Ad, 4), were designed and synthesized by incorporating four electron-donating arylamine units into the rigid adamantane skeleton via a simple C–N coupling reaction. Their thermal, photophysical and electrochemical properties were investigated. The molecular design endows the materials with high triplet energies of ∼3.0 eV, good solution processability, high thermal stability and appropriate HOMO levels. Two types of electroluminescent devices using 14 as hole-transporting or host materials were fabricated. The device based on 2 as solution-processed hole-transporting material and tris(quinolin-8-yloxy)aluminum as an emitter revealed a maximum current efficiency of 4.2 cd A−1, which was comparable with the TAPC-based control device. The sky-blue device employing 2 as solution-processed host material and 4,6-(difluorophenyl)pyridine-N,C2′)picolinate (FIrpic) as an emitter showed a maximum current efficiency of 16.6 cd A−1 with Commission Internationale de I’Eclairage (CIE) coordinates of (0.16, 0.32).  相似文献   

11.
We report bipolar host materials with robust indenocarbazole and biphenyl moiety as hole-electron-transporting unit for phosphorescent yellow organic light-emitting diodes (OLEDs). New host materials demonstrated an excellent morphological stability with high glass transition temperature of 207 °C. Simultaneously, it also revealed appropriate triplet energy of about 2.6 eV for ideal triplet energy transfer to yellow phosphorescent dopant. A phosphorescent yellow OLED with new host ICBP1 (and ICBP2) and conventional yellow dopant iridium(III)bis(4-(4-t-butylphenyl)thieno[3,2-c]pyridinato-N,C2′)acetylacetonate (Ir(tptpy)2acac) shows a low driving voltage of 3.4 (and 3.6 V) at 1000 cd/m2, and maximum external quantum efficiency as high as 26.4%. Such efficient performance of phosphorescent yellow OLEDs is attributed to a good charge balance and high electron transport properties of host materials.  相似文献   

12.
1-(9-Anthryl)-2-phenylethene (t-APE) is a blue-green material with high fluorescence quantum yield (Фf 0.44). However, it is easily crystallized. Herein, Two asymmetric blue-green emitting materials based on t-APE, (E)-9-(4-(2-(anthracen-9-yl)vinyl)phenyl)-10-(naphthalen-1-yl)anthracene (6) and (E)-9-(4-(2-(anthracen-9-yl)vinyl)phenyl)-10-(naphthalen-2-yl)anthracene (7) were firstly designed and synthesized. The two compounds possess high thermal stability, morphological durability, and bipolar characteristics. The non-doped blue-green organic light-emitting diodes (OLEDs) using 6 and 7 as emitting layers showed emission at 495 nm, full width at half maximum of 80 nm, maximum brightness of 13,814, 10,579 cd m−2, maximum current efficiency of 3.62, 7.16 cd A−1, and Commission Internationale de L'Eclairage (CIE) coordinate of (0.20, 0.43), respectively. Furthermore, when employing 6 and 7 as blue-green emitting layers and rubrene doped in tris-(8-hydroxyquinolinato)aluminum (Alq3) as the orange emitting layers to fabricate white OLEDs (WOLEDs), the WOLEDs exhibit a maximum brightness of 10,984, 14,652 cd m−2, maximum current efficiency of 2.04, 2.70 cd A−1, and CIE coordinate of (0.30, 0.40), (0.37, 0.47), Color Rendering Index (CRI) of 65, 60, stable EL spectra, respectively. This study demonstrates that the t-APE-type derivatives have the excellent properties for the emitting materials of OLEDs.  相似文献   

13.
In this article we report on the performances of phosphorescent orange organic light-emitting diodes (OLEDs) having a high operational stability. The fabricated devices all consist of a “hybrid” structure, where the hole-injection layer was processed from solution, while the rest of the organic materials were deposited by vacuum thermal evaporation. A device stack having an emissive layer comprising a carbazole-based host TCzMe doped with the orange phosphor tris(2-phenylquinoline)iridium(III) [Ir(2-phq)3] shows improved efficiencies compared to a the same device with the standard N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine (NPB) as host material. External quantum efficiency (EQE) up to 7.4% and a power efficiency of 16 lm/W were demonstrated using TCzMe. Most importantly, the operational stability of the device was largely improved, resulting in extrapolated values reaching lifetimes well above 100,000 h at initial luminance of 1000 Cd/m2.  相似文献   

14.
A new series of wide‐bandgap materials, 4‐dipenylphosphine oxide‐4′‐9H‐carbazol‐9‐yl‐tetraphenylsilane (CSPO), 4‐diphenylphosphine oxide‐4′,4″‐di(9H‐carbazol‐9‐yl)‐tetraphenylsilane (pDCSPO), 4‐diphenylphosphine oxide ‐4′‐[3‐(9H‐carbazol‐9‐yl)‐carbazole‐9‐yl]‐tetraphenylsilane (DCSPO), 4‐diphenylphosphine oxide‐4′,4″,4″′‐tri(9H‐carbazol‐9‐yl)‐tetraphenylsilane (pTCSPO) and 4‐diphenylphosphine oxide ‐4′‐[3,6‐di(9H‐carbazol‐9‐yl)‐9H‐carbazol‐9‐yl]‐tetraphenylsilane (TCSPO), containing different ratios and linking fashions of p‐type carbazole units and n‐type phosphine oxide units, are designed and obtained. DCSPO is the best host in FIrpic‐doped devices for this series of compounds. By utilizing DCzSi and DPOSi as hole‐ and electron‐transporting layers, a high EQE of 27.5% and a maximum current efficiency of 49.4 cd A?1 are achieved in the DCSPO/FIrpic doped device. Even at 10 000 cd m?2, the efficiencies still remain 41.2 cd A?1 and 23.0%, respectively.  相似文献   

15.
We present our first application of the neutral cluster beam deposition (NCBD) method to fabricate bilayer heterojunction-based organic light-emitting field-effect transistors (OLEFETs) by superimposing two layers of α,ω-dihexylsexithiophene (DH6T) and N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) successively. Based upon well-balanced ambipolarity (hole and electron field-effect mobilities of 2.22 × 10−2 and 2.78 × 10−2 cm2/Vs), the air-stable OLEFETs have demonstrated good field-effect characteristics, stress-free operational stability and electroluminescence under ambient condition.  相似文献   

16.
New large-bandgap host materials with carbazole and carboline moieties were designed and synthesized for high-performance blue phosphorescent organic light-emitting diodes (PhOLEDs). The two kinds of host materials, 9-(4-(9H-carbazol-9-yl)phenyl)-6-(9H-carbazol-9-yl)-9H-pyrido[2,3-b]indole (pP2CZCB) and 9-(3-(9H-carbazol-9-yl)phenyl)-6-(9H-carbazol-9-yl)-9H-pyrido[2,3-b]indole (mP2CZCB), displayed promisingly high triplet energies of ∼2.92–2.93 eV for enhancing the exothermic energy transfer to bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic) in PhOLED devices. It was found that the blue PhOLEDs bearing the new host materials and the FIrpic dopant exhibited markedly higher external quantum efficiencies (EQEs) than a device made with 1,3-bis(N-carbazolyl)benzene (mCP) as the host. In particular, the PhOLED device made with 3 wt% FIrpic as the dopant and mP2CZCB as the host material displayed a low driving voltage of 4.13 V and the high EQE of 25.3% at 1000 cd m−2.  相似文献   

17.
Organic Light-Emitting Diodes (OLEDs) using the thermally activated delayed fluorescence (TADF) emitter (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) are demonstrated using a novel ambipolar host 3,5-di(carbazol-9-yl)-1-phenylsulfonylbenzene (mCPSOB). When doped in a 5 wt.% concentration, OLEDs with EL efficiency values of more than 81 cd/A for current efficacy and 26.5% for external quantum efficiency are reported. These devices exhibit a low turn-on voltage of 3.2 V at 10 cd/m2, as well as reduced efficiency roll-off at high current densities. To the best of our knowledge, these are among the highest ever reported efficiencies for TADF OLEDs, and are even comparable to the highest reported efficiencies for phosphorescent OLEDs.  相似文献   

18.
By incorporating different number of pyridine rings to the periphery of the 9,10-diphenylanthracene (DPA) core, four new pyridine-containing DPA derivatives, 3-(4-(10-phenylanthracen-9-yl)phenyl)pyridine (AnPy), 9,10-bis(4-(pyridin-3-yl)phenyl)anthracene (AnDPy), 3,3'-((2-(pyridin-3-yl)anthracene-9,10-diyl)bis(4,1-phenylene))dipyridine (AnTPy), 3,3'-(9,10-bis(4-(pyridin-3-yl)phenyl)anthracene-2,6-diyl)dipyridine (AnFPy) were designed and synthesized as electron transporters. Their photophysical properties, energy levels and electron mobilities can be readily regulated through tuning the quantity of the pyridine ring. Through optimizing electron injection/transporting properties, AnTPy exhibits not only a suitable lowest unoccupied molecular orbital (LUMO) energy level for electron injection into light-emitting layer (EML), but also a relatively high electron mobility of around 10−3 cm2 V−1 s−1, which is about two orders of magnitude higher than that of the widely used material Alq3. As expected, the blue fluorescent OLEDs with AnPy, AnTPy and AnFPy as an electron-transporting layer (ETL) exhibited superior performance compared to that using Alq3, remarkably lowering the driving voltages and improving efficiencies. In particular, the device with AnTPy as an ETL showed a maximum current efficiency of 14.4 cd A−1, a maximum power efficiency of 12.1 lm W−1, a maximum external quantum efficiency (EQE) of 8.15% and low efficiency roll-off even at an illumination-relevant luminance of 10,000 cd m−2. These results clearly demonstrated that tuning electron injection/transporting properties by optimizing the number of peripheral electron-withdrawing groups was an efficient strategy to achieve high-performance ETMs.  相似文献   

19.
Highly efficient deep blue phosphorescent organic light-emitting diodes (PHOLEDs) using two heteroleptic iridium compounds, (dfpypy)2Ir(acac) and (dfpypy)2Ir(dpm), as a dopant and 9-(3-(9H-carbazol-9-yl)phenyl)-9H-carbazol-3-yl)diphenylphosphine oxide as a host material have been developed. The electroluminescent device of (dfpypy)2Ir(dpm) at the doping level of 3 wt% shows the best performance with external quantum efficiency of 18.5–20.4% at the brightness of 100–1000 cd/m2 and the color coordinate of (0.14, 0.18) at 1000 cd/m2.  相似文献   

20.
Phosphorescent organic light-emitting devices (PHOLEDs) with high efficiency and low efficiency roll-off were fabricated. The emissive layer was composed of a thermally activated delayed fluorescence (TADF) material 4,5-bis(carbazol-9-yl)-1,2-dicyanobenzene (2CzPN) as host and an orange iridium complex bis(4-tert-butyl-2-phenylbenzothiozolato-N,C2′)iridium(III)(acetylacetonate) [(tbt)2Ir(acac)] as dopant. At a low dopant concentration of 1 wt%, a PHOLED without light extraction optimization achieved a maximum power efficiency of 42.1 lm/W, a luminance efficiency of 77.9 cd/A and an external quantum efficiency (EQE) of 26.8%, respectively. Meanwhile, the EQE maintained 26.6% at 1000 cd/m2 and 25.8% at 5000 cd/m2, respectively. Moreover, a critical current density of 300 mA/cm2 was realized, indicating significantly improved efficiency roll-off. The efficient utilization of triplet excitons on 2CzPN for phosphorescence via reverse inter-system crossing of 2CzPN followed by Fӧrster resonance energy transfer from 2CzPN to (tbt)2Ir(acac) is responsible for the superior performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号