首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
An approach is proposed for the rapid prediction of nano‐particle transport and deposition in the human airway, which requires the solution of both the Navier–Stokes and advection–diffusion equations and for which computational efficiency is a challenge. The proposed method builds low‐order models that are representative of the fully coupled equations by means of the Galerkin projection and proper orthogonal decomposition technique. The obtained reduced‐order models (ROMs) are a set of ordinary differential equations for the temporal coefficients of the basis functions. The numerical results indicate that the ROMs are highly efficient for the computation (the speedup factor is approximately 3 × 103) and have reasonable accuracy compared with the full model (relative error of ≈7 × 10?3). Using ROMs, the deposition of particles is studied for 1≤dn≤100 nm, where dn is the diameter of a nano‐particle. The effectiveness of this approach is promising for applications of health risk assessment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
To predict the vibro‐acoustic behavior of structures, both a structural problem and an acoustic problem have to be solved. For thin structures immersed in water, a strong interaction between the structural domain and fluid domain occurs. This significantly alters the resonance frequencies. In this work, the structure is modeled by the finite element method. The exterior acoustic problem is solved by a fast boundary element method employing hierarchical matrices. An FE‐BE formulation is presented, which allows the solution of the coupled eigenvalue problem and thus the prediction of the coupled eigenfrequencies and mode shapes. It is based on a Schur complement formulation of the FE‐BE system yielding a generalized eigenvalue problem. A Krylov–Schur solver is applied for its efficient solution. Hereby, the compressibility of the fluid is neglected. The coupled eigensolution is then used for a model reduction strategy allowing fast frequency sweep calculations. The efficiency of the proposed formulations is investigated with respect to memory consumption, accuracy, and computation time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Component mode‐based model‐order reduction (MOR) methods like the Craig–Bampton method or the Rubin method are known to be limited to structures with small coupling interfaces. This paper investigates two interface‐reduction methods for application of MOR to systems with large coupling interfaces: for the Craig–Bampton method a direct reduction method based on strain energy considerations is investigated. Additionally, for the Rubin method an iterative reduction scheme is proposed, which incrementally constructs the reduction basis. Hereby, attachment modes are tested if they sufficiently enlarge the spanned subspace of the current reduction basis. If so, the m‐orthogonal part is used to augment the basis. The methods are applied to FE–BE coupled systems in order to predict the vibro‐acoustic behavior of structures, which are partly immersed in water. Hereby, a strong coupling scheme is employed, since for dense fluids the feedback of the acoustic pressure onto the structure is not negligible. For two example structures, the efficiency of the reduction methods with respect to numerical effort, memory consumption and computation time is compared with the exact full‐order solution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A rigorous method for stabilizing projection‐based linear reduced‐order models without significantly affecting their accuracy is proposed. Unlike alternative approaches, this method is computationally efficient. It requires primarily the solution of a small‐scale convex optimization problem. Furthermore, it is nonintrusive in the sense that it operates directly on readily available reduced‐order operators. These can be precomputed using any data compression technique including balanced truncation, balanced proper orthogonal decomposition, proper orthogonal decomposition, or moment matching. The proposed method is illustrated with three applications: the stabilization of the reduction of the Computational Fluid Dynamics‐based model of a linearized unsteady supersonic flow, the reduction of a Computational Structural Dynamics system, and the stabilization of the reduction of a coupled Computational Fluid Dynamics–Computational Structural Dynamics model of a linearized aeroelastic system in the transonic flow regime. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We consider an optimal model reduction problem for large‐scale dynamical systems. The problem is formulated as a minimization problem over Grassmann manifold with two variables. This formulation allows us to develop a two‐sided Grassmann manifold algorithm, which is numerically efficient and suitable for the reduction of large‐scale systems. The resulting reduced system preserves the stability of the original system. Numerical examples are presented to show that the proposed algorithm is computationally efficient and robust with respect to the selection of initial projection matrices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A new approach for the dimensional reduction via projection of nonlinear computational models based on the concept of local reduced‐order bases is presented. It is particularly suited for problems characterized by different physical regimes, parameter variations, or moving features such as discontinuities and fronts. Instead of approximating the solution of interest in a fixed lower‐dimensional subspace of global basis vectors, the proposed model order reduction method approximates this solution in a lower‐dimensional subspace generated by most appropriate local basis vectors. To this effect, the solution space is partitioned into subregions, and a local reduced‐order basis is constructed and assigned to each subregion offline. During the incremental solution online of the reduced problem, a local basis is chosen according to the subregion of the solution space where the current high‐dimensional solution lies. This is achievable in real time because the computational complexity of the selection algorithm scales with the dimension of the lower‐dimensional solution space. Because it is also applicable to the process of hyper reduction, the proposed method for nonlinear model order reduction is computationally efficient. Its potential for achieving large speedups while maintaining good accuracy is demonstrated for two nonlinear computational fluid and fluid‐structure‐electric interaction problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
To be feasible for computationally intensive applications such as parametric studies, optimization, and control design, large‐scale finite element analysis requires model order reduction. This is particularly true in nonlinear settings that tend to dramatically increase computational complexity. Although significant progress has been achieved in the development of computational approaches for the reduction of nonlinear computational mechanics models, addressing the issue of contact remains a major hurdle. To this effect, this paper introduces a projection‐based model reduction approach for both static and dynamic contact problems. It features the application of a non‐negative matrix factorization scheme to the construction of a positive reduced‐order basis for the contact forces, and a greedy sampling algorithm coupled with an error indicator for achieving robustness with respect to model parameter variations. The proposed approach is successfully demonstrated for the reduction of several two‐dimensional, simple, but representative contact and self contact computational models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A reduced order model (ROM) based on the proper orthogonal decomposition (POD)/Galerkin projection method is proposed as an alternative discretization of the linearized compressible Euler equations. It is shown that the numerical stability of the ROM is intimately tied to the choice of inner product used to define the Galerkin projection. For the linearized compressible Euler equations, a symmetry transformation motivates the construction of a weighted L2 inner product that guarantees certain stability bounds satisfied by the ROM. Sufficient conditions for well‐posedness and stability of the present Galerkin projection method applied to a general linear hyperbolic initial boundary value problem (IBVP) are stated and proven. Well‐posed and stable far‐field and solid wall boundary conditions are formulated for the linearized compressible Euler ROM using these more general results. A convergence analysis employing a stable penalty‐like formulation of the boundary conditions reveals that the ROM solution converges to the exact solution with refinement of both the numerical solution used to generate the ROM and of the POD basis. An a priori error estimate for the computed ROM solution is derived, and examined using a numerical test case. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

9.
We present an efficient numerical method to solve for cyclic steady states of nonlinear electro‐mechanical devices excited at resonance. Many electro‐mechanical systems are designed to operate at resonance, where the ramp‐up simulation to steady state is computationally very expensive – especially when low damping is present. The proposed method relies on a Newton–Krylov shooting scheme for the direct calculation of the cyclic steady state, as opposed to a naïve transient time‐stepping from zero initial conditions. We use a recently developed high‐order Eulerian–Lagrangian finite element method in combination with an energy‐preserving dynamic contact algorithm in order to solve the coupled electro‐mechanical boundary value problem. The nonlinear coupled equations are evolved by means of an operator split of the mechanical and electrical problem with an explicit as well as implicit approach. The presented benchmark examples include the first three fundamental modes of a vibrating nanotube, as well as a micro‐electro‐mechanical disk resonator in dynamic steady contact. For the examples discussed, we observe power law computational speed‐ups of the form S  = 0.6·ξ  ? 0.8, where ξ is the linear damping ratio of the corresponding resonance frequency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Very recently, control charts for monitoring the ratio of 2 normal variables have been investigated in statistical process control. In the two‐sided case, however, these control charts tend to be average run length (ARL) biased, in the sense that some out‐of‐control ARL values are larger than the in‐control ARL. This paper proposes an ARL‐unbiased EWMA control chart for monitoring of this kind of ratio with each subgroup consisting of n?1 sample units. Also, to study the long‐term properties of ARL‐unbiased EWMA‐RZ control chart, we investigate the steady‐state ARL. Several tables and figures are given to show the statistical properties of the proposed control charts. The comparison results show that the proposed ARL‐unbiased chart outperforms other two‐sided control charts in terms of the zero‐state and steady‐state ARL. An example illustrates the use of this chart on a real quality control problem from the food industry.  相似文献   

11.
A high‐order local transmitting boundary to model the propagation of acoustic or elastic, scalar or vector‐valued waves in unbounded domains of arbitrary geometry is proposed. It is based on an improved continued‐fraction solution of the dynamic stiffness matrix of an unbounded medium. The coefficient matrices of the continued‐fraction expansion are determined recursively from the scaled boundary finite element equation in dynamic stiffness. They are normalised using a matrix‐valued scaling factor, which is chosen such that the robustness of the numerical procedure is improved. The resulting continued‐fraction solution is suitable for systems with many DOFs. It converges over the whole frequency range with increasing order of expansion and leads to numerically more robust formulations in the frequency domain and time domain for arbitrarily high orders of approximation and large‐scale systems. Introducing auxiliary variables, the continued‐fraction solution is expressed as a system of linear equations in iω in the frequency domain. In the time domain, this corresponds to an equation of motion with symmetric, banded and frequency‐independent coefficient matrices. It can be coupled seamlessly with finite elements. Standard procedures in structural dynamics are directly applicable in the frequency and time domains. Analytical and numerical examples demonstrate the superiority of the proposed method to an existing approach and its suitability for time‐domain simulations of large‐scale systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of the present work is to clarify the fine granular area (FGA) formation mechanism in two steels (tempered 34CrNiMo6 and X10CrNiMoV12‐2‐2) causing grain refinement in the early state of fatigue for internal crack initiation and propagation in the very high cycle fatigue regime at pure tension‐compression loading (R = ?1) and for applied mean stresses (R ≠ ?1). Fatigue tests were performed with constant and variable amplitude at several R values using ultrasonic fatigue testing setups. Failed specimens were investigated using high‐resolution scanning electron microscopy and focused ion beam technique with special attention paid to the crack origin and the surrounding microstructure. To prove models for FGA formation proposed in literature, a numerical model to evaluate effective R values and contact stresses between the fracture surfaces depending on the crack length has been realised. The aim of these investigations is to estimate the influence of crack closure effects on FGA formation. FGA formation due to repeating contact of the fracture surfaces according to the model postulated by Hong et al correlates well with the findings for numerical simulations.  相似文献   

13.
Fluid–structure coupled problems are investigated to predict the vibro‐acoustic behavior of submerged bodies. The finite element method is applied for the structural part, whereas the boundary element method is used for the fluid domain. The focus of this paper is on partly immersed bodies. The fluid problem is favorably modeled by a half‐space formulation. This way, the Dirichlet boundary condition on the free fluid surface is incorporated by a half‐space fundamental solution. A fast multipole implementation is presented for the half‐space problem. In case of a high density of the fluid, the forces due to the acoustic pressure, which act on the structure, cannot be neglected. Thus, a strong coupling scheme is applied. An iterative solver is used to handle the coupled system. The efficiency of the proposed approach is discussed using a realistic model problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A bridge is built between projection methods and SIMPLE type methods (Semi‐Implicit Method for Pressure‐Linked Equation). A general second‐order accurate projection method is developed for the simulation of incompressible unsteady flows by employing a non‐linear update of pressure term as Θn?pn+1+(In)?pn, where Θn is a coefficient matrix, which may depend on the grid size, time step and even velocity. It includes three‐ and four‐step projection methods. The standard SIMPLE method is written in a concise formula for steady and unsteady flows. It is proven that SIMPLE type methods have second‐order temporal accuracy for unsteady flows. The classical second‐order projection method and SIMPLE type methods are united within the framework of the general second‐order projection formula. Two iteration algorithms of SIMPLE type methods for unsteady flows are described and discussed. In addition, detailed formulae are provided for general projection methods by using the Runge–Kutta technique to update the convective term and Crank–Nicholson scheme for the diffusion term. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
An efficient symmetric Lanczos method for the solution of vibro‐acoustic eigenvalue problems is presented in this paper. Although finite element discretization results in real but nonsymmetric system matrices, we show that an efficient iteration scheme on a symmetric representation can be built up by using a transformation matrix. In order to decrease the numerical costs of the orthogonalizations performed, we propose to use a partial orthogonalization scheme for the symmetric case. The proposed method is tested on two large problems in order to demonstrate its efficiency and accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Predicting the frequency response of a complex vibro‐acoustic system becomes extremely difficult in the mid‐frequency regime. In this work, a novel hybrid face‐based smoothed finite element method/statistical energy analysis (FS‐FEM/SEA) method is proposed, aiming to further improve the accuracy of ‘mid‐frequency’ predictions. According to this approach, the whole vibro‐acoustic system is divided into a combination of a plate subsystem with statistical behaviour and an acoustic cavity subsystem with deterministic behaviour. The plate subsystem is treated using the recently developed FS‐FEM, and the cavity subsystem is dealt with using the SEA. These two different types of subsystems can be coupled and interacted through the so‐called diffuse field reciprocity relation. The ensemble average response of the system is calculated, and the uncertainty is confined and treated in the SEA subsystems. The use of FS‐FEM ‘softens’ the well‐known ‘overly stiff’ behaviour in the standard FEM and reduces the inherent numerical dispersion error. The proposed FS‐FEM/SEA approach is verified and its features are examined by various numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The numerical modelling of interacting acoustic media by boundary element method–finite element method (BEM–FEM) coupling procedures is discussed here, taking into account time‐domain approaches. In this study, the global model is divided into different sub‐domains and each sub‐domain is analysed independently (considering BEM or FEM discretizations): the interaction between the different sub‐domains of the global model is accomplished by interface procedures. Numerical formulations based on FEM explicit and implicit time‐marching schemes are discussed, resulting in direct and optimized iterative BEM–FEM coupling techniques. A multi‐level time‐step algorithm is considered in order to improve the flexibility, accuracy and stability (especially when conditionally stable time‐marching procedures are employed) of the coupled analysis. At the end of the paper, numerical examples are presented, illustrating the potentialities and robustness of the proposed methodologies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Frequency sweeps in structural dynamics, acoustics, and vibro‐acoustics require evaluating frequency response functions for a large number of frequencies. The brute force approach for performing these sweeps leads to the solution of a large number of large‐scale systems of equations. Several methods have been developed for alleviating this computational burden by approximating the frequency response functions. Among these, interpolatory model order reduction methods are perhaps the most successful. This paper reviews this family of approximation methods with particular attention to their applicability to specific classes of frequency response problems and their performance. It also includes novel aspects pertaining to the iterative solution of large‐scale systems of equations in the context of model order reduction and frequency sweeps. All reviewed computational methods are illustrated with realistic, large‐scale structural dynamic, acoustic, and vibro‐acoustic analyses in wide frequency bands. These highlight both the potential of these methods for reducing CPU time and their limitations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A clinically relevant magneto‐optical technique (fd‐FRS, frequency‐domain Faraday rotation spectroscopy) for characterizing proteins using antibody‐functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody–antigen complexes (anti‐BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL?1 and broad detection range of 10 pg mL?1 ? cBSA ? 100 µ g mL?1 are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme‐linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL?1 ? cBSA ? 500 ng mL?1. In addition to the increased sensitivity, broader detection range, and similar specificity, fd‐FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd‐FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences.  相似文献   

20.
In the context of simulations of wave propagations in unbounded domain, absorbing boundary conditions are often used to truncate the simulation domain to a finite space. Perfectly matched layer (PML) has proven to be an excellent absorbing boundary conditions. However, as this technique was primarily designed for the first‐order equation system, it cannot be applied to the second‐order equation system directly. In this paper, based on a complex‐coordinate stretching technique, we developed a novel, efficient auxiliary‐differential equation form of the complex‐frequency shifted‐PML for the second‐order equation system. This facilitates the use of complex‐frequency shifted‐PML in acoustic simulations based upon wave equations of second‐order form. Compared with previous state‐of‐the‐art methods, the proposed one has the advantage of simpler implementation. It is an unsplit‐field scheme that can be extended to higher‐order discretization schemes conveniently. Numerical results from both homogeneous and heterogeneous computational domains are provided to illustrate the validity of the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号