首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an original algorithm and accompanying mathematical formulation for topology optimization of structures that can sustain material damage and are subject to multiple load cases with varying configurations. Damage accumulation is simulated using a coupled, non‐linear brittle damage model. The structures are optimized for minimum mass subject to stiffness constraints defined as the compliance evaluated at the end of each loading sequence. To achieve robustness of the optimized structures, the respective damage fields caused by each individual load case are computed and combined using superposition to simulate a worst‐case damage field. All load cases are then run a second time using the worst‐case damage distribution as a starting point. In this way, one effectively accounts for the spectrum of possible load sequences to which the structure may be subjected. Results from this method are compared with an exhaustive, brute‐force approach in which all non‐repeating load sequences are analyzed individually. For each method, the corresponding sensitivities are derived and implemented analytically using a path‐dependent adjoint method. The two approaches are implemented on a series of numerical examples, which demonstrate that the superposition method produces structures that are as robust as those obtained using the exhaustive method but require significantly less computational effort. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A transient finite strain viscoplastic model is implemented in a gradient‐based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark‐beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capability of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. The numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.  相似文献   

3.
针对频率约束的结构材料优化问题,基于结构拓扑优化思想,提出变频率区间约束的结构材料优化方法。借鉴均匀化及ICM(独立、连续、映射)方法,以微观单元拓扑变量倒数为设计变量,导出宏观单元等效质量矩阵及导数,进而获得频率一阶近似展开式。结合变频率区间约束思想,获得以结构质量为目标函数、频率为约束条件的连续体微结构拓扑优化近似模型;采用对偶方法求解。通过算例验证该方法的有效性及可行性,表明考虑质量矩阵变化影响所得优化结果更合理。  相似文献   

4.
We introduce an extension of current technologies for topology optimization of continuum structures which allows for treating local stress criteria. We first consider relevant stress criteria for porous composite materials, initially by studying the stress states of the so-called rank 2 layered materials. Then, on the basis of the theoretical study of the rank 2 microstructures, we propose an empirical model that extends the power penalized stiffness model (also called SIMP for Solid Isotropic Microstructure with Penalization for inter-mediate densities). In a second part, solution aspects of topology problems are considered. To deal with the so-called ‘singularity’ phenomenon of stress constraints in topology design, an ϵ-constraint relaxation of the stress constraints is used. We describe the mathematical programming approach that is used to solve the numerical optimization problems, and show results for a number of example applications. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Kun Cai  Jiao Shi 《工程优选》2014,46(2):244-260
Since the elasticity of bi-modulus materials is stress dependent, it is difficult to apply most conventional topology optimization methods to such bi-modulus structures owing to great computational expense. Therefore, this study employs the material-replacement method to improve the computational efficiency for topology optimization of bi-modulus structures. In this method, first, the bi-modulus material is replaced by two isotropic materials which have the same tensile or compressive modulus. Secondly, the isotropic materials for finite elements are determined by the local stress/strain states. The local elemental stiffness can be modified according to the current modulus and stress state of the element. Thirdly, the relative densities of elements, acting as the design variables, are updated using the optimality criterion method. Finally, the distributions of elemental densities and moduli are obtained for further applications. Several typical numerical examples are used to demonstrate the effectiveness of the proposed method.  相似文献   

6.
根据经典薄板理论,建立约束阻尼板有限元模型,将其视作镶嵌于无限大刚性障板,利用Rayleigh积分法推导结构的辐射声功率及灵敏度表达式。以一阶峰值频率或频带激励下的声功率最小化为目标,约束阻尼材料体积分数为约束条件,建立拓扑优化模型,采用渐进优化算法,编制了优化计算程序,获得了约束阻尼材料的最优拓扑构型,并与全覆盖板及基板的辐射声功率进行了对比。研究表明:以声功率最小化为目标,对约束阻尼材料布局进行拓扑优化,能有效抑制结构的振动声辐射,为结构低噪声设计提供了重要的理论参考和技术手段。  相似文献   

7.
This study shows how the Combined Approximations (CA) can be used for reducing the computational effort in Topology Optimization for free vibrations. The previously developed approach is based on the integration of several concepts and methods, including matrix factorization, series expansion, and reduced basis. In this paper the CA method is used for repeated eigenvalue analysis. Adjoint sensitivity analysis is developed such that the inaccuracies of the approximation are taken into consideration. Several 2‐D and 3‐D numerical examples show how optimal topology designs can be achieved by the reduced computational effort compared with the exact eigenvalue analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
龙凯  王文伟  贾娇 《复合材料学报》2016,33(7):1574-1583
为了设计周期性多孔钢或钢/铝复合材料优化微结构,基于独立连续映射法,建立了以结构总质量最小化为目标,节点位移为约束的拓扑优化模型。假设宏观结构由多孔材料或复合材料组成,其等效特性采用均匀化理论计算得到。定义了微观材料拓扑变量,节点位移约束采用一阶泰勒展开近似。各种材料设计要求作为约束条件纳入到优化模型中。推导了节点位移和总质量的敏度表达式。采用基于求解偏微分的过滤方法消除了数值不稳定性。在二维数值算例中获得了各种满足设计要求的优化材料微结构。结果表明:提出的方法在材料微结构拓扑优化设计中具有可行性和有效性。   相似文献   

9.
The present paper is concerned with the layout optimization of resonating actuators using topology optimization techniques. The goal of the optimization is a maximization of the magnitude of steady‐state vibrations for a given excitation frequency. The problem formulation includes an external viscous damper at the output port which models a working load on the structure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
This work is focused on the topology optimization of lightweight structures consisting of multiphase materials. Instead of adopting the common idea of using volume constraint, a new problem formulation with mass constraint is proposed. Meanwhile, recursive multiphase materials interpolation (RMMI) and uniform multiphase materials interpolation (UMMI) schemes are discussed and compared based on numerical tests and theoretical analysis. It is indicated that the nonlinearity of the mass constraint introduced by RMMI brings numerical difficulties to attain the global optimum of the optimization problem. On the contrary, the UMMI‐2 scheme makes it possible to formulate the mass constraint in a linear form with separable design variables. One such formulation favors very much the problem resolution by means of mathematical programming approaches, especially the convex programming methods. Moreover, numerical analysis indicates that fully uniform initial weighting is beneficial to seek the global optimum when UMMI‐2 scheme is used. Besides, the relationship between the volume constraint and mass constraint is theoretically revealed. The filtering technique is adapted to avoid the checkerboard pattern related to the problem with multiphase materials. Numerical examples show that the UMMI‐2 scheme with fully uniform initial weighting is reliable and efficient to deal with the structural topology optimization with multiphase materials and mass constraint. Meanwhile, the mass constraint formulation is evidently more significant than the volume constraint formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We present a novel method for computational design of adaptive shape-memory alloy (SMA) structures via topology optimization. By optimally distributing a SMA within the prescribed design domain, the proposed algorithm seeks to tailor the two-way shape-memory effect (TWSME) and pseudoelasticity response of the SMA materials. Using a phenomenological material model, the thermomechanical response of the SMA structure is solved through inelastic finite element analysis, while assuming a transient but spatially uniform temperature distribution. The material distribution is parameterized via a SIMP formulation, with gradient-based optimization used to perform the optimization search. We derive a transient, bilevel adjoint formulation for analytically computing the design sensitivities. We demonstrate the proposed design framework using a series of two-dimensional thermomechanical benchmark problems. These examples include design for optimal displacement due to the TWSME, and design for maximum mechanical advantage while accounting for pseudoelasticity.  相似文献   

12.
Following the extended two-material density penalization scheme, a stress-based topology optimization method for the layout design of prestressed concrete structures is proposed. The Drucker–Prager yield criterion is used to predict the asymmetrical strength failure of concrete. The prestress is considered by making a reasonable assumption on the prestressing orientation in each element and adding an additional load vector to the structural equilibrium function. The proposed optimization model is thus formulated as to minimize the reinforcement material volume under Drucker–Prager yield constraints on elemental concrete local stresses. In order to give a reasonable definition of concrete local stress and prevent the stress singularity phenomenon, the local stress interpolation function and the ? -relaxation technique are adopted. The topology optimization problem is solved using the method of moving asymptotes combined with an active set strategy. Numerical examples are given to show the efficiency of the proposed optimization method in the layout design of prestressed concrete structures.  相似文献   

13.
Topology optimization using stress constraints and considering uncertainties is a serious challenge, since a reliability problem has to be solved for each stress constraint, for each element in the mesh. In this paper, an alternative way of solving this problem is used, where uncertainty quantification is performed through the first‐order perturbation approach, with proper validation by Monte Carlo simulation. Uncertainties are considered in the loading magnitude and direction. The minimum volume problem subjected to local stress constraints is formulated as a robust problem, where the stress constraints are written as a weighted average between their expected value and standard deviation. The augmented Lagrangian method is used for handling the large set of local stress constraints, whereas a gradient‐based algorithm is used for handling the bounding constraints. It is shown that even in the presence of small uncertainties in loading direction, different topologies are obtained when compared to a deterministic approach. The effect of correlation between uncertainties in loading magnitude and direction on optimal topologies is also studied, where the main observed result is loss of symmetry in optimal topologies.  相似文献   

14.
With the fast development of additive manufacturing technology, topology optimization involving multiple materials has received ever increasing attention. Traditionally, this kind of optimization problem is solved within the implicit solution framework by using the Solid Isotropic Material with Penalization or level set method. This treatment, however, will inevitably lead to a large number of design variables especially when many types of materials are involved and 3‐dimensional (3D) problems are considered. This is because for each type of material, a corresponding density field/level function defined on the entire design domain must be introduced to describe its distribution. In the present paper, a novel approach for topology optimization with multiple materials is established based on the Moving Morphable Component framework. With use of this approach, topology optimization problems with multiple materials can be solved with much less numbers of design variables and degrees of freedom. Numerical examples provided demonstrate the effectiveness of the proposed approach.  相似文献   

15.
Dual optimization algorithms are well suited for the topology design of continuum structures in discrete variables, since in these problems the number of constraints is small in comparison to the number of design variables. The ‘raw’ dual algorithm, which was originally proposed for the minimum compliance design problem, worked well when a perimeter constraint was added in addition to the volume constraint. However, if the perimeter constraint was gradually relaxed by increasing the upper bound on the allowable perimeter, the algorithm tended to behave erratically. Recently, a simple strategy has been suggested which modifies the raw dual algorithm to make it more robust in the absence of the perimeter constraint; in particular the problem of checkerboarding which is frequently observed with the use of lower‐order finite elements is eliminated. In this work, we show how the perimeter constraint can be incorporated in this improved algorithm, so that it not only provides a designer with a control over the topology, but also generates good topologies irrespective of the value of the upper bound on the perimeter. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis of topology optimization with elastoplastic material modeling. Concrete and steel are both considered as elastoplastic materials, including the appropriate yield criteria and post‐yielding response. The same approach can be applied also for topology optimization of other material compositions where nonlinear response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This article presents an alternative topology optimization method for the design of compliant actuators using mesh-free methods, in which the thermo-mechanical multi-physics modelling and geometrically non-linear analysis are included. The relatively new mesh-free method rather than the standard finite element method (FEM) is used to discretize the design domain and interpolate the bulk density field, because the mesh-free method is in some cases more capable of modelling the large-displacement compliant mechanisms involving the geometrical non-linearity. An interpolation scheme is used to indicate the dependence of material properties on element pseudo densities which are distributed to the corresponding integration points, and the method for imposing essential boundary conditions in mesh-free methods is also discussed. Furthermore, the adjoint approach is incorporated into the mesh-free method to perform the design sensitivity analysis. The optimization problem is established mathematically as a non-linear programming problem to which a sequential convex programming method is applied. The effectiveness of the proposed method is demonstrated by using a widely studied example.  相似文献   

18.
19.
This paper presents a topology optimization framework for optimizing the fracture resistance of two‐phase composites considering interfacial damage interacting with crack propagation through a redistribution of the inclusions phase. A phase field method for fracture capable of describing interactions between bulk brittle fracture and interfacial damage is adopted within a diffuse approximation of discontinuities. This formulation avoids the burden of remeshing problem during crack propagation and is well adapted to topology optimization purpose. Efficient design sensitivity analysis is performed by using the adjoint method, and the optimization problem is solved by an extended bidirectional evolutionary structural optimization method. The sensitivity formulation accounts for the whole fracturing process involving crack nucleation, propagation, and interaction, either from the interfaces and then through the solid phases, or the opposite. The spatial distribution of material phases are optimally designed using the extended bidirectional evolutionary structural optimization method to improve the fractural resistance. We demonstrate through several examples that the fracture resistance of the composite can be significantly increased at constant volume fraction of inclusions by the topology optimization process.  相似文献   

20.
Discrete material optimization of general composite shell structures   总被引:4,自引:0,他引:4  
A novel method for doing material optimization of general composite laminate shell structures is presented and its capabilities are illustrated with three examples. The method is labelled Discrete Material Optimization (DMO) but uses gradient information combined with mathematical programming to solve a discrete optimization problem. The method can be used to solve the orientation problem of orthotropic materials and the material selection problem as well as problems involving both. The method relies on ideas from multiphase topology optimization to achieve a parametrization which is very general and reduces the risk of obtaining a local optimum solution for the tested configurations. The applicability of the DMO method is demonstrated for fibre angle optimization of a cantilever beam and combined fibre angle and material selection optimization of a four‐point beam bending problem and a doubly curved laminated shell. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号