首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops a new reliability‐based topology optimization framework considering spatially varying geometric uncertainties. Geometric imperfections arising from manufacturing errors are modeled with a random threshold model. The projection threshold is represented by a memoryless transformation of a Gaussian random field, which is then discretized by means of the expansion optimal linear estimation. The structural response and their sensitivities are evaluated with the polynomial chaos expansion, and the accuracy of the proposed method is verified by Monte Carlo simulations. The performance measure approach is adopted to tackle the reliability constraints in the reliability‐based topology optimization problem. The optimized designs obtained with the present method are compared with the deterministic solutions and the reliability‐based design considering random variables. Numerical examples demonstrate the efficiency of the proposed method.  相似文献   

2.
The uncertain spatial variation of material properties can remarkably affect the band gap characteristics of phononic crystals (PnCs). It is necessary to consider this issue when designing and manufacturing PnC materials/structures. This paper investigates a robust topology optimization method for designing the microstructures of PnCs by considering random‐field material properties. Herein, the spatial distribution of the material properties is first represented by a random field and then discretized into uncorrelated stochastic variables with the expansion optimal linear estimation method; stochastic band gap analysis is then conducted with polynomial chaos expansion. Furthermore, a robust topology optimization formulation of PnCs is proposed on the basis of the relative elemental density, where a weighted objective function handles the compromise of the mean value and standard deviation of the PnC band gap. The band gap response is analyzed, employing the finite element method for each sample of polynomial chaos expansion. In this context, the sensitivities of the stochastic band gap behaviors to the design variables are also derived. Numerical examples demonstrate that the proposed method can generate meaningful optimal topologies of PnCs with a relatively large width and less sensitive band gap. Additionally, the effects of the weight factors in the objective function and the variation coefficient of material properties are discussed.  相似文献   

3.
In this article, a unified framework is introduced for robust structural topology optimization for 2D and 3D continuum and truss problems. The uncertain material parameters are modelled using a spatially correlated random field which is discretized using the Karhunen–Loève expansion. The spectral stochastic finite element method is used, with a polynomial chaos expansion to propagate uncertainties in the material characteristics to the response quantities. In continuum structures, either 2D or 3D random fields are modelled across the structural domain, while representation of the material uncertainties in linear truss elements is achieved by expanding 1D random fields along the length of the elements. Several examples demonstrate the method on both 2D and 3D continuum and truss structures, showing that this common framework provides an interesting insight into robustness versus optimality for the test problems considered.  相似文献   

4.
拓扑优化方法经过几十年的发展,已成功应用于机械工程、航空航天、电磁等领域的构型设计中。然而,由于制造工艺的限制,拓扑优化结果通常无法直接应用,需根据工艺要求进行修改,因此在拓扑优化模型中考虑制造约束成为重要的研究方向。其中,尺寸控制广泛存在于大部分制造工艺中,主要包括最小尺寸控制与最大尺寸控制。该文提出了一种基于映射的拓扑优化最大尺寸控制方法,构造了一种新的映射模型,对结构中不满足最大尺寸约束的中心单元密度进行惩罚,在不引入任何约束条件的情况下实现了对结构最大尺寸的控制。此外,该文将该方法中的惩罚转变为一个全局约束条件后与具有最小尺寸控制功能的拓扑优化鲁棒列式相结合,实现了对构件的最大最小尺寸协同控制。数值算例表明了该方法的有效性。  相似文献   

5.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
This article introduces the element-propagating method to structural shape and topology optimization. Structural optimization based on the conventional level-set method needs to solve several partial differential equations. By the insertion and deletion of basic material elements around the geometric boundary, the element-propagating method can avoid solving the partial differential equations and realize the dynamic updating of the material region. This approach also places no restrictions on the signed distance function and the Courant–Friedrichs–Lewy condition for numerical stability. At the same time, in order to suppress the dependence on the design initialization for the 2D structural optimization problem, the strain energy density is taken as a criterion to generate new holes in the material region. The coupled algorithm of the element-propagating method and the method for generating new holes makes the structural optimization more robust. Numerical examples demonstrate that the proposed approach greatly improves numerical efficiency, compared with the conventional level-set method for structural topology optimization.  相似文献   

7.
The stochastic uncertainties associated with the material, process and product are represented and propagated to process and performance responses. A finite element-based sequential coupled process–performance framework is used to simulate the forming and energy absorption responses of a thin-walled tube in a manner that both material properties and component geometry can evolve from one stage to the next for better prediction of the structural performance measures. Metamodelling techniques are used to develop surrogate models for manufacturing and performance responses. One set of metamodels relates the responses to the random variables whereas the other relates the mean and standard deviation of the responses to the selected design variables. A multi-objective robust design optimization problem is formulated and solved to illustrate the methodology and the influence of uncertainties on manufacturability and energy absorption of a metallic double-hat tube. The results are compared with those of deterministic and augmented robust optimization problems.  相似文献   

8.
A parameterization level set method is presented for structural shape and topology optimization of compliant mechanisms involving large displacements. A level set model is established mathematically as the Hamilton–Jacobi equation to capture the motion of the free boundary of a continuum structure. The structural design boundary is thus described implicitly as the zero level set of a level set scalar function of higher dimension. The radial basis function with compact support is then applied to interpolate the level set function, leading to a relaxation and separation of the temporal and spatial discretizations related to the original partial differential equation. In doing so, the more difficult shape and topology optimization problem is now fully parameterized into a relatively easier size optimization of generalized expansion coefficients. As a result, the optimization is changed into a numerical process of implementing a series of motions of the implicit level set function via an existing efficient convex programming method. With the concept of the shape derivative, the geometrical non‐linearity is included in the rigorous design sensitivity analysis to appropriately capture the large displacements of compliant mechanisms. Several numerical benchmark examples illustrate the effectiveness of the present level set method, in particular, its capability of generating new holes inside the material domain. The proposed method not only retains the favorable features of the implicit free boundary representation but also overcomes several unfavorable numerical considerations relevant to the explicit scheme, the reinitialization procedure, and the velocity extension algorithm in the conventional level set method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this paper was to present a topology optimization methodology for obtaining robust designs insensitive to small uncertainties in the geometry. The variations are modeled using a stochastic field. The model can represent spatially varying geometry imperfections in devices produced by etching techniques. Because of under‐etching or over‐etching parts of the structure may become thinner or thicker than a reference design supplied to the manufacturer. The uncertainties are assumed to be small and their influence on the system response is evaluated using perturbation techniques. Under the above assumptions, the proposed algorithm provides a computationally cheap alternative to previously introduced stochastic optimization methods based on Monte Carlo sampling. The method is demonstrated on the design of a minimum compliance cantilever beam and a compliant mechanism. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

This paper combines previously developed techniques for image‐preprocessing and characteristic image‐interpreting together with a newly proposed automated shape‐optimization modeling technique into an integrated topology‐optimization and shape‐optimization system. As a result, structure designers are provided with an efficient and reliable automated structural optimization system (ASOS). The automated shape‐optimization modeling technique, the key technique in ASOS, uses hole‐expanding strategy, interference analysis, and hole shape‐adjusting strategy to automatically define the design variables and side constraints needed for shape optimization. This technique not only eliminates the need to manually define design variables and side constraints for shape optimization, but during the process of shape optimization also prevents interference between the interior holes and the exterior boundary. The ASOS is tested in three different structural configuration design examples.  相似文献   

11.
It is nowadays widely acknowledged that optimal structural design should be robust with respect to the uncertainties in loads and material parameters. However, there are several alternatives to consider such uncertainties in structural optimization problems. This paper presents a comprehensive comparison between the results of three different approaches to topology optimization under uncertain loading, considering stress constraints: (1) the robust formulation, which requires only the mean and standard deviation of stresses at each element; (2) the reliability-based formulation, which imposes a reliability constraint on computed stresses; (3) the non-probabilistic formulation, which considers a worst-case scenario for the stresses caused by uncertain loads. The information required by each method, regarding the uncertain loads, and the uncertainty propagation approach used in each case is quite different. The robust formulation requires only mean and standard deviation of uncertain loads; stresses are computed via a first-order perturbation approach. The reliability-based formulation requires full probability distributions of random loads, reliability constraints are computed via a first-order performance measure approach. The non-probabilistic formulation is applicable for bounded uncertain loads; only lower and upper bounds are used, and worst-case stresses are computed via a nested optimization with anti-optimization. The three approaches are quite different in the handling of uncertainties; however, the basic topology optimization framework is the same: the traditional density approach is employed for material parameterization, while the augmented Lagrangian method is employed to solve the resulting problem, in order to handle the large number of stress constraints. Results are computed for two reference problems: similarities and differences between optimized topologies obtained with the three formulations are exploited and discussed.  相似文献   

12.
The inclusion of non‐linear elastic analyses into the topology optimization problem is necessary to capture the finite deformation response, e.g. the geometric non‐linear response of compliant mechanisms. In previous work, the non‐linear response is computed by standard non‐linear elastic finite element analysis. Here, we incorporate a load–displacement constraint method to traverse non‐linear equilibrium paths with limit points to design structures that exhibit snap‐through behaviour. To accomplish this, we modify the basic arc length algorithm and embed this analysis into the topology optimization problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a mixed integer programming (MIP) formulation for robust topology optimization of trusses subjected to the stress constraints under the uncertain load. A design‐dependent uncertainty model of the external load is proposed for dealing with the variation of truss topology in the course of optimization. For a truss with the discrete member cross‐sectional areas, it is shown that the robust topology optimization problem can be reduced to an MIP problem, which is solved globally. Numerical examples illustrate that the robust optimal topology of a truss depends on the magnitude of uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a new computational framework based on the topology derivative concept is presented for evaluating stochastic topological sensitivities of complex systems. The proposed framework, designed for dealing with high dimensional random inputs, dovetails a polynomial dimensional decomposition (PDD) of multivariate stochastic response functions and deterministic topology derivatives. On one hand, it provides analytical expressions to calculate topology sensitivities of the first three stochastic moments which are often required in robust topology optimization (RTO). On another hand, it offers embedded Monte Carlo Simulation (MCS) and finite difference formulations to estimate topology sensitivities of failure probability for reliability-based topology optimization (RBTO). For both cases, the quantification of uncertainties and their topology sensitivities are determined concurrently from a single stochastic analysis. Moreover, an original example of two random variables is developed for the first time to obtain analytical solutions for topology sensitivity of moments and failure probability. Another 53-dimension example is constructed for analytical solutions of topology sensitivity of moments and semi-analytical solutions of topology sensitivity of failure probabilities in order to verify the accuracy and efficiency of the proposed method for high-dimensional scenarios. Those examples are new and make it possible for researchers to benchmark stochastic topology sensitivities of existing or new algorithms. In addition, it is unveiled that under certain conditions the proposed method achieves better accuracies for stochastic topology sensitivities than for the stochastic quantities themselves.  相似文献   

15.
This article revisits a topology optimization design approach for micro‐manufacturing and extends it to optical microlithography with partially coherent illumination. The solution is based on a combination of two technologies, the topology optimization and the proximity error correction in microlithography/nanolithography. The key steps include (i) modeling the physical inputs of the fabrication process, including the ultraviolet light illumination source and the mask, as the design variables in optimization and (ii) applying physical filtering and heaviside projection for topology optimization, which corresponds to the aerial image formulation and the pattern development processes, respectively. The proposed approach results in an effective source and a binary design mask, which can be sent directly to fabrication without additional post‐processing steps for proximity error correction. Meanwhile, the performance of the device is optimized and robust with respect to process variations, such as dose/photo‐resist variations and lens defocus. A compliant micro‐gripper design example is considered to demonstrate the applicability of this approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper will develop a new robust topology optimization method for the concurrent design of cellular composites with an array of identical microstructures subject to random‐interval hybrid uncertainties. A concurrent topology optimization framework is formulated to optimize both the composite macrostructure and the material microstructure. The robust objective function is defined based on the interval mean and interval variance of the corresponding objective function. A new uncertain propagation approach, termed as a hybrid univariate dimension reduction method, is proposed to estimate the interval mean and variance. The sensitivity information of the robust objective function can be obtained after the uncertainty analysis. Several numerical examples are used to validate the effectiveness of the proposed robust topology optimization method.  相似文献   

17.
This work addresses the use of the topology optimization approach to the design of robust continuum structures under the hypothesis of uncertainties with known second‐order statistics. To this end, the second‐order perturbation approach is used to model the response of the structure, and the midpoint discretization technique is used to discretize the random field. The objective function is a weighted sum of the expected compliance and its standard deviation. The optimization problem is solved using a traditional optimality criteria method. It is shown that the correlation length plays an important role in the obtained topology and statistical moments when only the minimization of the standard deviation is considered, resulting in more and thinner reinforcements as the correlation length decreases. It is also shown that the minimization of the expected value is close to the minimization of the deterministic compliance for small variations of Young's modulus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a system identification scheme to determine the geometric shape of an inclusion in a finite body. The proposed algorithm is based on the minimization of the least‐squared errors between the measured displacement field and calculated displacement field by the finite element model. The domain parameterization technique is adopted to manipulate the shape variation of an inclusion. To stabilize the optimization process, a new regularization function defined by the length of the boundary curve of an inclusion is added to the error function. A variable regularization factor scheme is proposed for a consistent regularization effect. The modified Newton method with the active set method is adopted for optimization. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
The paper presents a gradient‐based topology optimization formulation that allows to solve acoustic–structure (vibro‐acoustic) interaction problems without explicit boundary interface representation. In acoustic–structure interaction problems, the pressure and displacement fields are governed by Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are coupled by surface‐coupling integrals, however, such a formulation does not allow for free material re‐distribution in connection with topology optimization schemes since the boundaries are not explicitly given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u /p‐formulation). The Helmholtz equation is obtained as a special case of the mixed formulation for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several two‐dimensional acoustic–structure problems are optimized in order to verify the proposed method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The topology optimization problem of a continuum structure is further investigated under the independent position uncertainties of multiple external loads, which are now described with an interval vector of uncertain-but-bounded variables. In this study, the structural compliance is formulated with the quadratic Taylor series expansion of multiple loading positions. As a result, the objective gradient information to the topological variables can be evaluated efficiently upon an explicit quadratic expression as the loads deviate from their ideal application points. Based on the minimum (largest absolute) value of design sensitivities, which corresponds to the most sensitive compliance to the load position variations, a two-level optimization algorithm within the non-probabilistic approach is developed upon a gradient-based optimization method. The proposed framework is then performed to achieve the robust optimal configurations of four benchmark examples, and the final designs are compared comprehensively with the traditional topology optimizations under the loading point fixation. It will be observed that the present methodology can provide a remarkably different structural layout with the auxiliary components in the design domain to counteract the load position uncertainties. The numerical results also show that the present robust topology optimization can effectively prevent the structural performance from a noticeable deterioration than the deterministic optimization in the presence of load position disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号