首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a unified framework is introduced for robust structural topology optimization for 2D and 3D continuum and truss problems. The uncertain material parameters are modelled using a spatially correlated random field which is discretized using the Karhunen–Loève expansion. The spectral stochastic finite element method is used, with a polynomial chaos expansion to propagate uncertainties in the material characteristics to the response quantities. In continuum structures, either 2D or 3D random fields are modelled across the structural domain, while representation of the material uncertainties in linear truss elements is achieved by expanding 1D random fields along the length of the elements. Several examples demonstrate the method on both 2D and 3D continuum and truss structures, showing that this common framework provides an interesting insight into robustness versus optimality for the test problems considered.  相似文献   

2.
This article proposes an efficient approach for solving three-dimensional (3D) topology optimization problem. In this approach, the number of design variables in optimization as well as the number of degrees of freedom in structural response analysis can be reduced significantly. This is accomplished through the use of scaled boundary finite element method (SBFEM) for structural analysis under the moving morphable component (MMC)-based topology optimization framework. In the proposed method, accurate response analysis in the boundary region dictates the accuracy of the entire analysis. In this regard, an adaptive refinement scheme is developed where the refined mesh is only used in the boundary region while relating coarse mesh is used away from the boundary. Numerical examples demonstrate that the computational efficiency of 3D topology optimization can be improved effectively by the proposed approach.  相似文献   

3.
A transient finite strain viscoplastic model is implemented in a gradient‐based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark‐beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capability of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. The numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.  相似文献   

4.
This paper presents a topology optimization framework for optimizing the fracture resistance of two‐phase composites considering interfacial damage interacting with crack propagation through a redistribution of the inclusions phase. A phase field method for fracture capable of describing interactions between bulk brittle fracture and interfacial damage is adopted within a diffuse approximation of discontinuities. This formulation avoids the burden of remeshing problem during crack propagation and is well adapted to topology optimization purpose. Efficient design sensitivity analysis is performed by using the adjoint method, and the optimization problem is solved by an extended bidirectional evolutionary structural optimization method. The sensitivity formulation accounts for the whole fracturing process involving crack nucleation, propagation, and interaction, either from the interfaces and then through the solid phases, or the opposite. The spatial distribution of material phases are optimally designed using the extended bidirectional evolutionary structural optimization method to improve the fractural resistance. We demonstrate through several examples that the fracture resistance of the composite can be significantly increased at constant volume fraction of inclusions by the topology optimization process.  相似文献   

5.
This article introduces the element-propagating method to structural shape and topology optimization. Structural optimization based on the conventional level-set method needs to solve several partial differential equations. By the insertion and deletion of basic material elements around the geometric boundary, the element-propagating method can avoid solving the partial differential equations and realize the dynamic updating of the material region. This approach also places no restrictions on the signed distance function and the Courant–Friedrichs–Lewy condition for numerical stability. At the same time, in order to suppress the dependence on the design initialization for the 2D structural optimization problem, the strain energy density is taken as a criterion to generate new holes in the material region. The coupled algorithm of the element-propagating method and the method for generating new holes makes the structural optimization more robust. Numerical examples demonstrate that the proposed approach greatly improves numerical efficiency, compared with the conventional level-set method for structural topology optimization.  相似文献   

6.
A novel density‐based topology optimization framework for plastic energy absorbing structural designs with maximum damage constraint is proposed. This framework enables topologies to absorb large amount of energy via plastic work before failure occurs. To account for the plasticity and damage during the energy absorption, a coupled elastoplastic ductile damage model is incorporated with topology optimization. Appropriate material interpolation schemes are proposed to relax the damage in the low‐density regions while still ensuring the convergence of Newton‐Raphson solution process in the nonlinear finite element analyses. An effective method for obtaining path‐dependent sensitivities of the plastic work and maximum damage via adjoint method is presented, and the sensitivities are verified by the central difference method. The effectiveness of the proposed methodology is demonstrated through a series of numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
A new methodology is proposed for the topology optimization of fluid in Stokes flow. The binary design variable and no‐slip condition along the solid–fluid interface are regularized to allow for the use of continuous mathematical programming techniques. The regularization is achieved by treating the solid phase of the topology as a porous medium with flow governed by Darcy's law. Fluid flow throughout the design domain is then expressed as a single system of equations created by combining and scaling the Stokes and Darcy equations. The mixed formulation of the new Darcy–Stokes system is solved numerically using existing stabilized finite element methods for the individual flow problems. Convergence to the no‐slip condition is demonstrated by assigning a low permeability to solid phase and results suggest that auxiliary boundary conditions along the solid–fluid interface are not needed. The optimization objective considered is to minimize dissipated power and the technique is used to solve examples previously examined in literature. The advantages of the Darcy–Stokes approach include that it uses existing stabilization techniques to solve the finite element problem, it produces 0–1 (void–solid) topologies (i.e. there are no regions of artificial material), and that it can potentially be used to optimize the layout of a microscopically porous material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents an adaptive mesh adjustment algorithm for continuum topology optimization method to describe the structural boundary using nonuniform isoparametric element. A criterion on the basis of the node movement is proposed; herein, the densities and coordinates of the nodes are defined to instruct the deformation of finite elements in subsequent optimization iterations. With such a scheme, the topology optimization can start from a regular mesh discretization then gradually yields an optimal design with clear structural boundaries. The element in the transition along the boundary is refined; on the contrary, the pure solid or void element is coarsen. The contribution of this work is to improve the resolution of the structural boundaries and decrease the percentage of transitional regions with the invariant design variable. Several 2D and 3D numerical examples indicate the effectiveness of our proposed method. Seen from the examples, the structural boundary become smoother and the intermediate densities have been reduced up to 70%. In addition, a design process based on the presented method is proposed to make the optimum solutions be fabricated conveniently and accurately by linking it with the 3D design software, ie, SolidWorks, which is also demonstrated in the numerical examples.  相似文献   

9.
将稳定性问题引入传统变密度法中,可实现包含稳定性约束的平面模型结构拓扑优化。以单元相对密度为设计变量,结构柔度最小为目标函数,结构体积和失稳载荷因子为约束条件建立优化问题数学模型,提出了一种考虑结构稳定性的变密度拓扑优化方法。通过分析结构柔度、体积、失稳载荷因子对设计变量的灵敏度,并基于拉格朗日乘子法和Kuhn-Tucker条件,推导了优化问题的迭代准则。同时,利用基于约束条件的泰勒展开式求解优化准则中的拉格朗日乘子。通过推导平面四节点四边形单元几何刚度矩阵的显式表达式,得到了优化准则中的几何应变能。最后,通过算例对提出的方法进行了验证,并与不考虑稳定性的传统变密度拓扑优化方法进行对比,结果表明该方法能显著提高拓扑优化结果的稳定性。研究结果对细长受压结构的优化设计有重要指导意义,对结构的稳定性设计有一定参考价值。  相似文献   

10.
A general methodology for topology optimization using the finite element method is described for shell structures. Four‐ and nine‐node Reissner–Mindlin shell elements with drilling degrees of freedom are used for the finite element response analysis. The artificial material model is used in the topology optimization and in particular, an isotropic multi‐layer shell model is introduced to allow the formation of holes or stiffening zones. In addition, a single design variable resizing algorithm is implemented based on the existing criterion which is found to be adequate for the artificial material model. Several benchmark tests are presented to show the overall performance of the proposed methodology. The strain energy variation together with the variation of the layout of the structure is monitored. Some detailed examples are provided with comparisons of the use of the four‐ and nine‐node elements and studies of critical solution parameters. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

11.
This study focuses on the topology optimization framework for the design of multimaterial dissipative systems at finite strains. The overall goal is to combine a soft viscoelastic material with a stiff hyperelastic material for realizing optimal structural designs with tailored damping and stiffness characteristics. To this end, several challenges associated with incorporating finite-deformation viscoelastic-hyperelastic materials in a multimaterial design framework are addressed. This includes consideration of a thermodynamically consistent finite-strain viscoelasticity model for simulating energy dissipation together with F-bar finite elements for handling material incompressibility. Moreover, an effective multimaterial interpolation scheme is proposed, which preserves the physics of material mixtures in the context of density-based topology optimization. A numerically accurate analytical design sensitivity calculation is also presented using a path-dependent adjoint method. Furthermore, both prescribed-load and prescribed-displacement boundary conditions are considered in the optimization formulations, together with various strategies for controlling stiffness. As demonstrated by the numerical examples, the use of the stiffer hyperelastic material phase in a design not only improves stiffness but also increases energy dissipation capacity. Moreover, with the finite-deformation theory, the effect of the loading magnitude on the optimized designs can be observed.  相似文献   

12.
A new integrated layout optimization method is proposed here for the design of multi‐component systems. By introducing movable components into the design domain, the components layout and the supporting structural topology are optimized simultaneously. The developed design procedure mainly consists of three parts: (i) Introduction of non‐overlap constraints between components. The finite circle method (FCM) is used to avoid the components overlaps and also overlaps between components and the design domain boundaries. (ii) Layout optimization of the components and supporting structure. Locations and orientations of the components are assumed as geometrical design variables for the optimal placement while topology design variables of the supporting structure are defined by the density points. Meanwhile, embedded meshing techniques are developed to take into account the finite element mesh change caused by the component movements. (iii) Consistent material interpolation scheme between element stiffness and inertial load. The commonly used solid isotropic material with penalization model is improved to avoid the singularity of localized deformation in the presence of design dependent loading when the element stiffness and the involved inertial load are weakened by the element material removal. Finally, to validate the proposed design procedure, a variety of multi‐component system layout design problems are tested and solved on account of inertia loads and gravity center position constraint. Solutions are compared with traditional topology designs without component. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This paper addresses material nonlinear topology optimization considering the von Mises criterion by means of an asymptotic analysis using a fictitious nonlinear elastic model. In this context, we consider the topology optimization problem subjected to prescribed energy, which leads to robust convergence in nonlinear problems. Two nested formulations are considered. In the first, the objective is to maximize the strain energy of the system in equilibrium, and in the second, the objective is to maximize the load factor. In both cases, a volume constraint is imposed. The sensitivity analysis is quite effective and efficient in the sense that there is no extra adjoint equation. In addition, the nonlinear structural equilibrium problem is solved using direct minimization of the structural strain energy using Newton's method with an inexact line-search strategy. Four numerical examples demonstrate the features of the proposed material nonlinear topology optimization framework for approximating standard von Mises plasticity.  相似文献   

14.
基于人工材料的结构拓扑渐进优化设计   总被引:18,自引:1,他引:17  
首先,提出了一种在结构边界和孔洞周围附加人工材料的思路。在此基础上,结合ESO方法和应力灵敏度,建立了结构有限单元增、删的准则, 给出了一种新的拓扑优化算法。算例表明该方法能采用固定有限元网格中不同的初始优化结构就可获得优化拓扑。由于其概念上的简洁性和应用上的有效性,该方法具有一定的工程应用价值。  相似文献   

15.
 Simultaneous optimization with respect to the structural topology, actuator locations and control parameters of an actively controlled plate structure is investigated in this paper. The system consists of a clamped-free plate, a H 2 controller and four surface-bonded piezoelectric actuators utilized for suppressing the bending and torsional vibrations induced by external disturbances. The plate is represented by a rectangular design domain which is discretized by a regular finite element mesh and for each element the parameter indicating the presence or absence of material is used as a topology design variable. Due to the unavailability of large-scale 0–1 optimization algorithms, the binary variables of the original topology design problem are relaxed so that they can take all values between 0 and 1. The popular techniques in the topology optimization area including penalization, filtering and perimeter restriction are also used to suppress numerical problems such as intermediate thickness, checkerboards, and mesh dependence. Moreover, since it is not efficient to treat the structural and control design variables equally within the same framework, a nested solving approach is adopted in which the controller syntheses are considered as sub processes included in the main optimization process dealing with the structural topology and actuator locations. The structural and actuator variables are solved in the main optimization by the method of moving asymptotes, while the control parameters are designed in the sub optimization processes by solving the Ricatti equations. Numerical examples show that the approach used in this paper can produce systems with clear structural topology and high control performance. Received 16 November 2001 / Accepted 26 February 2002  相似文献   

16.
This paper develops a new reliability‐based topology optimization framework considering spatially varying geometric uncertainties. Geometric imperfections arising from manufacturing errors are modeled with a random threshold model. The projection threshold is represented by a memoryless transformation of a Gaussian random field, which is then discretized by means of the expansion optimal linear estimation. The structural response and their sensitivities are evaluated with the polynomial chaos expansion, and the accuracy of the proposed method is verified by Monte Carlo simulations. The performance measure approach is adopted to tackle the reliability constraints in the reliability‐based topology optimization problem. The optimized designs obtained with the present method are compared with the deterministic solutions and the reliability‐based design considering random variables. Numerical examples demonstrate the efficiency of the proposed method.  相似文献   

17.
Level set methods are becoming an attractive design tool in shape and topology optimization for obtaining efficient and lighter structures. In this paper, a dynamic implicit boundary‐based moving superimposed finite element method (s‐version FEM or S‐FEM) is developed for structural topology optimization using the level set methods, in which the variational interior and exterior boundaries are represented by the zero level set. Both a global mesh and an overlaying local mesh are integrated into the moving S‐FEM analysis model. A relatively coarse fixed Eulerian mesh consisting of bilinear rectangular elements is used as a global mesh. The local mesh consisting of flexible linear triangular elements is constructed to match the dynamic implicit boundary captured from nodal values of the implicit level set function. In numerical integration using the Gauss quadrature rule, the practical difficulty due to the discontinuities is overcome by the coincidence of the global and local meshes. A double mapping technique is developed to perform the numerical integration for the global and coupling matrices of the overlapped elements with two different co‐ordinate systems. An element killing strategy is presented to reduce the total number of degrees of freedom to improve the computational efficiency. A simple constraint handling approach is proposed to perform minimum compliance design with a volume constraint. A physically meaningful and numerically efficient velocity extension method is developed to avoid the complicated PDE solving procedure. The proposed moving S‐FEM is applied to structural topology optimization using the level set methods as an effective tool for the numerical analysis of the linear elasticity topology optimization problems. For the classical elasticity problems in the literature, the present S‐FEM can achieve numerical results in good agreement with those from the theoretical solutions and/or numerical results from the standard FEM. For the minimum compliance topology optimization problems in structural optimization, the present approach significantly outperforms the well‐recognized ‘ersatz material’ approach as expected in the accuracy of the strain field, numerical stability, and representation fidelity at the expense of increased computational time. It is also shown that the present approach is able to produce structures near the theoretical optimum. It is suggested that the present S‐FEM can be a promising tool for shape and topology optimization using the level set methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, the bi-directional evolutionary structural optimization (BESO) method based on the element-free Galerkin (EFG) method is presented for topology optimization of continuum structures. The mathematical formulation of the topology optimization is developed considering the nodal strain energy as the design variable and the minimization of compliance as the objective function. The EFG method is used to derive the shape functions using the moving least squares approximation. The essential boundary conditions are enforced by the method of Lagrange multipliers. Several topology optimization problems are presented to show the effectiveness of the proposed method. Many issues related to topology optimization of continuum structures, such as chequerboard patterns and mesh dependency, are studied in the examples.  相似文献   

19.
Unlike the traditional topology optimization approach that uses the same discretization for finite element analysis and design optimization, this paper proposes a framework for improving multiresolution topology optimization (iMTOP) via multiple distinct discretizations for: (1) finite elements; (2) design variables; and (3) density. This approach leads to high fidelity resolution with a relatively low computational cost. In addition, an adaptive multiresolution topology optimization (AMTOP) procedure is introduced, which consists of selective adjustment and refinement of design variable and density fields. Various two‐dimensional and three‐dimensional numerical examples demonstrate that the proposed schemes can significantly reduce computational cost in comparison to the existing element‐based approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we propose a checkerboard‐free topology optimization method without introducing any additional constraint parameter. This aim is accomplished by the introduction of finite element approximation for continuous material distribution in a fixed design domain. That is, the continuous distribution of microstructures, or equivalently design variables, is realized in the whole design domain in the context of the homogenization design method (HDM), by the discretization with finite element interpolations. By virtue of this continuous FE approximation of design variables, discontinuous distribution like checkerboard patterns disappear without any filtering schemes. We call this proposed method the method of continuous approximation of material distribution (CAMD) to emphasize the continuity imposed on the ‘material field’. Two representative numerical examples are presented to demonstrate the capability and the efficiency of the proposed approach against some classes of numerical instabilities. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号