首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper deals with numerical solution of differential equations with random inputs, defined on bounded random domain with non‐uniform probability measures. Recently, there has been a growing interest in the stochastic collocation approach, which seeks to approximate the unknown stochastic solution using polynomial interpolation in the multi‐dimensional random domain. Existing approaches employ sparse grid interpolation based on the Smolyak algorithm, which leads to orders of magnitude reduction in the number of support nodes as compared with usual tensor product. However, such sparse grid interpolation approaches based on piecewise linear interpolation employ uniformly sampled nodes from the random domain and do not take into account the probability measures during the construction of the sparse grids. Such a construction based on uniform sparse grids may not be ideal, especially for highly skewed or localized probability measures. To this end, this work proposes a weighted Smolyak algorithm based on piecewise linear basis functions, which incorporates information regarding non‐uniform probability measures, during the construction of sparse grids. The basic idea is to construct piecewise linear univariate interpolation formulas, where the support nodes are specially chosen based on the marginal probability distribution. These weighted univariate interpolation formulas are then used to construct weighted sparse grid interpolants, using the standard Smolyak algorithm. This algorithm results in sparse grids with higher number of support nodes in regions of the random domain with higher probability density. Several numerical examples are presented to demonstrate that the proposed approach results in a more efficient algorithm, for the purpose of computation of moments of the stochastic solution, while maintaining the accuracy of the approximation of the solution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Differentiating matrices allow the numerical differentiation of functions defined at points of a discrete grid. Previous derivations of these matrices have been restricted to grids with uniformly spaced points, and the resulting derivative approximations have lacked precision, especially at endpoints. The present work derives differentiating matrices on grids with arbitrarily spaced points. It is shown that high accuracy can be achieved through use of differentiating matrices on non-uniform grids through the expedient of including ‘near- boundary’ points. Use of the differentiating matrix as an operator in the solution of problems involving ordinary differential equations is also considered.  相似文献   

4.
We analyze interval estimates for the bounds of service life in the problem of damage accumulation with the help of a model based on the analysis of nonlinear phenomenological differential equations. The solution of this problem is obtained within the framework of the method of stochastic differential equations deduced as a generalization of the Kachanov-Rabotnov model of damage accumulation. By using the methods of the theory of stochastic differential equations, we find the variance of the estimate for the bounds of the periods of damage accumulation as a function of the parameters of the stochastic process. We also estimated the mean time to fracture for a statistically homogeneous rod subjected to constant loading taking into account the random component of the load. Petrozavodsk State University, Petrozavodsk, Russia. Translated from Problemy Prochnosti, No. 1, pp. 151–156, January–February, 2000.  相似文献   

5.
Markov chain Monte Carlo approaches have been widely used for Bayesian inference. The drawback of these methods is that they can be computationally prohibitive especially when complex models are analyzed. In such cases, variational methods may provide an efficient and attractive alternative. However, the variational methods reported to date are applicable to relatively simple models and most are based on a factorized approximation to the posterior distribution. Here, we propose a variational approach that is capable of handling models that consist of a system of differential-algebraic equations and whose posterior approximation can be represented by a multivariate distribution. Under the proposed approach, the solution of the variational inference problem is decomposed into three steps: a maximum a posteriori optimization, which is facilitated by using an orthogonal collocation approach, a preprocessing step, which is based on the estimation of the eigenvectors of the posterior covariance matrix, and an expected propagation optimization problem. To tackle multivariate integration, we employ quadratures derived from the Smolyak rule (sparse grids). Examples are reported to elucidate the advantages and limitations of the proposed methodology. The results are compared to the solutions obtained from a Markov chain Monte Carlo approach. It is demonstrated that significant computational savings can be gained using the proposed approach. This article has supplementary material online.  相似文献   

6.
Radial basis functions are a very accurate means of solving interpolation and partial differential equations problems. The global radial basis functions collocation technique produces ill-conditioning matrices when using multiquadrics, making the choice of the shape parameter a crucial issue. The use of local numerical schemes, such as finite differences produces much better conditioned matrices. However, finite difference schemes are limited to special grids. For scattered points, a combination of finite differences and radial basis functions would be a possible solution. In this paper, we use a higher-order shear deformation plate theory and a radial basis function—finite difference technique for predicting the static behavior of thin and thick composite plates. Through numerical experiments on square and L-shaped plates, the accuracy and efficiency of this collocation technique is demonstrated, and the numerical accuracy and convergence are thoughtfully examined. This technique shows great potential to solve large engineering problems without the issue of ill-conditioning.  相似文献   

7.
The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes’ theorem. The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito–Taylor’s discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplified by considering the reliability analysis of a few low-dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on a limited amount of pertinent Monte Carlo simulations.  相似文献   

8.
This work presents a novel approach, referred here as Galerkin based generalized analysis of variance decomposition (GG-ANOVA), for the solution of stochastic steady state diffusion problems. The proposed approach utilizes generalized ANOVA (G-ANOVA) expansion to represent the unknown stochastic response and Galerkin projection to decompose the stochastic differential equation into a set of coupled differential equations. The coupled set of partial differential equations obtained are solved using finite difference method and homotopy algorithm. Implementation of the proposed approach for solving stochastic steady state diffusion problems has been illustrated with three numerical examples. For all the examples, results obtained are in excellent agreement with the benchmark solutions. Additionally, for the second and third problems, results obtained have also been compared with those obtained using polynomial chaos expansion (PCE) and conventional G-ANOVA. It is observed that the proposed approach yields highly accurate result outperforming both PCE and G-ANOVA. Moreover, computational time required using GG-ANOVA is in close proximity of G-ANOVA and less as compared to PCE.  相似文献   

9.
B PASCUAL  S ADHIKARI 《Sadhana》2012,37(3):319-340
The stochastic finite element analysis of elliptic type partial differential equations is considered. A reduced method of the spectral stochastic finite element method using polynomial chaos is proposed. The method is based on the spectral decomposition of the deterministic system matrix. The reduction is achieved by retaining only the dominant eigenvalues and eigenvectors. The response of the reduced system is expanded as a series of Hermite polynomials, and a Galerkin error minimization approach is applied to obtain the deterministic coefficients of the expansion. The moments and probability density function of the solution are obtained by a process similar to the classical spectral stochastic finite element method. The method is illustrated using three carefully selected numerical examples, namely, bending of a stochastic beam, flow through porous media with stochastic permeability and transverse bending of a plate with stochastic properties. The results obtained from the proposed method are compared with classical polynomial chaos and direct Monte Carlo simulation results.  相似文献   

10.
This work compares sample‐based polynomial surrogates, well suited for moderately high‐dimensional stochastic problems. In particular, generalized polynomial chaos in its sparse pseudospectral form and stochastic collocation methods based on both isotropic and dimension‐adapted sparse grids are considered. Both classes of approximations are compared, and an improved version of a stochastic collocation with dimension adaptivity driven by global sensitivity analysis is proposed. The stochastic approximations efficiency is assessed on multivariate test function and airfoil aerodynamics simulations. The latter study addresses the probabilistic characterization of global aerodynamic coefficients derived from viscous subsonic steady flow about a NACA0015 airfoil in the presence of geometrical and operational uncertainties with both simplified aerodynamics model and Reynolds‐Averaged Navier‐Stokes (RANS) simulation. Sparse pseudospectral and collocation approximations exhibit similar level of performance for isotropic sparse simulation ensembles. Computational savings and accuracy gain of the proposed adaptive stochastic collocation driven by Sobol' indices are patent but remain problem‐dependent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of this paper is to elucidate some relevant aspects concerning the numerical solution of stochastic differential equations in structural and mechanical applications. Specifically, the attention is focused on those differential problems involving fractional operators to model the viscoelastic behavior of the structural/mechanical components and involving a white noise process as stochastic input. Starting from the consideration that the Grünwald–Letnikov based integration scheme, that is a step-by-step procedure often invoked in literature to discretize and integrate the aforementioned differential equations, is not properly employed due to the discontinuous nature of the input, an alternative numerical integration scheme is proposed. The latter is based on the Riemann–Liouville fractional integral and relies on the parabolic piecewise approximation of the response function to be integrated, leading to a more effective and more advantageous solution than that provided by the Grünwald–Letnikov based integration scheme. This is demonstrated analyzing the case study of a fractional Euler–Bernoulli beam and comparing the numerical results with those obtained by an analytical solution available in literature.  相似文献   

12.
This work presents a data‐driven stochastic collocation approach to include the effect of uncertain design parameters during complex multi‐physics simulation of Micro‐ElectroMechanical Systems (MEMS). The proposed framework comprises of two key steps: first, probabilistic characterization of the input uncertain parameters based on available experimental information, and second, propagation of these uncertainties through the predictive model to relevant quantities of interest. The uncertain input parameters are modeled as independent random variables, for which the distributions are estimated based on available experimental observations, using a nonparametric diffusion‐mixing‐based estimator, Botev (Nonparametric density estimation via diffusion mixing. Technical Report, 2007). The diffusion‐based estimator derives from the analogy between the kernel density estimation (KDE) procedure and the heat dissipation equation and constructs density estimates that are smooth and asymptotically consistent. The diffusion model allows for the incorporation of the prior density and leads to an improved density estimate, in comparison with the standard KDE approach, as demonstrated through several numerical examples. Following the characterization step, the uncertainties are propagated to the output variables using the stochastic collocation approach, based on sparse grid interpolation, Smolyak (Soviet Math. Dokl. 1963; 4 :240–243). The developed framework is used to study the effect of variations in Young's modulus, induced as a result of variations in manufacturing process parameters or heterogeneous measurements on the performance of a MEMS switch. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A methodology is proposed for the efficient solution of probabilistic nonconvex constrained optimization problems with uncertain. Statistical properties of the underlying stochastic generator are characterized from an initial statistical sample of function evaluations. A diffusion manifold over the initial set of data points is first identified and an associated basis computed. The joint probability density function of this initial set is estimated using a kernel density model and an Itô stochastic differential equation (ISDE) constructed with this model as its invariant measure. This ISDE is adapted to fluctuate around the manifold yielding additional joint realizations of the uncertain parameters, design variables, and function values, which are obtained as solutions of the ISDE. The expectations in the objective function and constraints are then accurately evaluated without performing additional function evaluations. The methodology brings together novel ideas from manifold learning and stochastic Hamiltonian dynamics to tackle an outstanding challenge in stochastic optimization. Three examples are presented to highlight different aspects of the proposed methodology.  相似文献   

14.
A new full approximation storage multigrid method has been developed for Euler equations. Instead of the usual approach of using frozen τ (the relative truncation error between fine and coarse grid levels), the relative truncation error is distributed over coarse grids based on the solution of a set of model equations at every time step. This allows for more number of sweeps at coarse grid level. As a result, the present multigrid method is able to accelerate the solution at much faster rate than the conventional multigrid method. A first order Steger and Warming flux vector splitting strategy has been used here for solving Euler equations as well as the model equations for τ. Results are presented to demonstrate the ability of the present multigrid method.  相似文献   

15.
针对现有稀疏信号功率迭代算法对方位相近目标分辨概率与估计精度较低问题,提出了一种稀疏信号功率迭代补偿的矢量传感器阵列波达方向(Direction of Arrival, DOA)估计方法。基于稀疏信号补偿原理和加权协方差矩阵拟合准则,构建了关于稀疏信号功率与补偿权重的目标函数。推导了稀疏信号功率迭代更新表达式的闭式解。通过对稀疏信号功率进行谱峰搜索获得DOA估计值。理论分析表明,所提算法通过对离散网格点上的信号功率进行补偿提高了方位相近目标的分辨率概率与估计精度。仿真结果表明,相较于经典子空间算法与现有稀疏功率迭代算法,所提算法对方位相近目标具有较高的分辨概率与估计精度。  相似文献   

16.
We present a novel multigrid (MG) procedure for the efficient solution of the large non‐symmetric system of algebraic equations used to model the evolution of a hydraulically driven fracture in a multi‐layered elastic medium. The governing equations involve a highly non‐linear coupled system of integro‐partial differential equations along with the fracture front free boundary problem. The conditioning of the algebraic equations typically degrades as O(N3). A number of characteristics of this problem present significant new challenges for designing an effective MG strategy. Large changes in the coefficients of the PDE are dealt with by taking the appropriate harmonic averages of the discrete coefficients. Coarse level Green's functions for multiple elastic layers are constructed using a single dual mesh and superposition. Coarse grids that are sub‐sets of the finest grid are used to treat mixed variable problems associated with ‘pinch points.’ Localized approximations to the Jacobian at each MG level are used to devise efficient Gauss–Seidel smoothers and preferential line iterations are used to eliminate grid anisotropy caused by large aspect ratio elements. The performance of the MG preconditioner is demonstrated in a number of numerical experiments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A finite element based procedure for the solution of the compressible Euler equations on unstructured tetrahedral grids is described. The spatial discretisation is accomplished by means of an approximate variational formulatin, with the explicit addition of a matrix form of artificial viscosity. The solution is advanced in time by means of an explicit multi-stage time stepping procedure. The method is implemented in terms of an edge based representation for the tetrahedral grid. The solution procedure is accelerated by use of a fully unstructured multigrid algorithm. The approach is applied to the simulation of the flow past an installed aero-engine nacelle, at three different free stream conditions. Comparison is made between the numerical predictions and experimental pressure observations.  相似文献   

18.
In this article, we propose and analyse a sparse grid collocation method to solve an optimal control problem involving an elliptic partial differential equation with random coefficients and forcing terms. The input data are assumed to be dependent on a finite number of random variables. We prove that an optimal solution exists, and derive an optimality system. A Galerkin approximation in physical space and a sparse grid collocation in the probability space is used. Error estimates for a fully discrete solution using an appropriate norm are provided, and we analyse the computational efficiency. Computational evidence complements the present theory, to show the effectiveness of our stochastic collocation method.  相似文献   

19.
In the present work the problem of determining the probabilistic structure of the dynamical response of nonlinear systems subjected to general, external, stochastic excitation is considered. The starting point of our approach is a Hopf-type equation, governing the evolution of the joint, response–excitation, characteristic functional. Exploiting this equation, we derive new linear partial differential equations governing the joint, response–excitation, characteristic (or probability density) function, which can be considered as an extension of the well-known Fokker–Planck–Kolmogorov equation to the case of a general, correlated excitation and, thus, non-Markovian response character. These new equations are supplemented by initial conditions and a marginal compatibility condition (with respect to the known probability distribution of the excitation), which is of non-local character. The validity of this new equation is also checked by showing its equivalence with the infinite system of moment equations. The method is applicable to any differential system, in state-space form, exhibiting polynomial nonlinearities. In this paper the method is illustrated through a detailed analysis of a simple, first-order, scalar equation, with a cubic nonlinearity. It is also shown that various versions of Fokker–Planck–Kolmogorov equation, corresponding to the case of independent-increment excitations, can be derived by using the same approach.

A numerical method for the solution of these new equations is introduced and illustrated through its application to the simple model problem. It is based on the representation of the joint probability density (or characteristic) function by means of a convex superposition of kernel functions, which permits us to satisfy a priori the non-local marginal compatibility condition. On the basis of this representation, the partial differential equation is eventually transformed to a system of ordinary differential equations for the kernel parameters. Extension to general, multidimensional, dynamical systems exhibiting any polynomial nonlinearity will be presented in a forthcoming paper.  相似文献   


20.
In this paper, we consider a novel numerical scheme for solving incompressible flows on collocated grids. The implicit potential method utilizes an implicit potential velocity obtained from a Helmholtz decomposition for the mass conservation and employs a modified form of Bernoulli's law for the coupling of the velocity–pressure corrections. It requires the solution only of the momentum equations, does not involve the solution of additional partial differential equations for the pressure, and is applied on a collocated grid. The accuracy of the method is tested through comparison with analytical, experimental, and numerical data from the literature, and its efficiency and robustness are evaluated by solving several benchmark problems such as flow around a circular cylinder and in curved square and circular ducts.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号